Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Catalan
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 6,497 Bytes
c096dbe
34d65c7
 
 
 
c2567ac
d719455
c2567ac
34d65c7
 
 
 
 
 
 
 
871db02
 
a72eaa5
 
 
66e644e
a72eaa5
66e644e
 
 
 
 
 
a72eaa5
 
66e644e
 
a72eaa5
66e644e
 
a72eaa5
66e644e
 
 
 
a72eaa5
 
 
 
 
 
 
 
 
34d65c7
c096dbe
1c5a879
c096dbe
 
34d65c7
c096dbe
0d30577
0cacc5f
34d65c7
0cacc5f
c096dbe
 
34d65c7
c096dbe
8371e4a
c096dbe
e577807
c096dbe
feff109
 
c096dbe
 
29bddd5
c096dbe
34d65c7
c096dbe
f0d4825
c096dbe
 
 
 
 
34d65c7
c096dbe
 
 
 
34d65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c096dbe
 
34d65c7
c096dbe
34d65c7
 
 
 
 
 
 
 
c096dbe
34d65c7
 
 
c096dbe
34d65c7
c096dbe
 
c82379a
c096dbe
 
 
0d30577
34d65c7
c096dbe
 
0d30577
34d65c7
d15c191
 
34d65c7
 
0021ba9
 
50111e3
34d65c7
 
 
 
 
 
c096dbe
34d65c7
c096dbe
0d30577
c096dbe
34d65c7
 
 
 
 
 
 
 
b2cbe03
34d65c7
 
 
0d30577
34d65c7
 
 
0d30577
34d65c7
 
c096dbe
 
 
c7cdb32
c096dbe
8371e4a
 
0d30577
34d65c7
 
 
 
 
c096dbe
34d65c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c096dbe
34d65c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ca
license:
- cc-by-nc-nd-4.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets: []
task_categories:
- text-classification
task_ids:
- natural-language-inference
pretty_name: teca
dataset_info:
  features:
  - name: id
    dtype: string
  - name: premise
    dtype: string
  - name: hypothesis
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 3235458
    num_examples: 16930
  - name: validation
    num_bytes: 405380
    num_examples: 2116
  - name: test
    num_bytes: 401081
    num_examples: 2117
  download_size: 2735358
  dataset_size: 4041919
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test
    path: data/test-*
---

# Dataset Card for TE-ca


## Dataset Description

- **Website:** https://zenodo.org/record/4761458
- **Repository** [HuggingFace](https://huggingface.co/projecte-aina)
- **Paper:** [Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan](https://arxiv.org/abs/2107.07903)
- **Point of Contact:** [Language Technologies Unit](langtech@bsc.es)


### Dataset Summary

TE-ca is a dataset of textual entailment in Catalan, which contains 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction or neutral).

This dataset was developed by [BSC TeMU](https://temu.bsc.es/) as part of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina/), to enrich the [Catalan Language Understanding Benchmark (CLUB)](https://club.aina.bsc.es/). 

This work is licensed under an <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.

### Supported Tasks and Leaderboards

Textual entailment, Text classification, Language Model

### Languages

The dataset is in Catalan (`ca-ES`).

## Dataset Structure

### Data Instances

Three JSON files, one for each split.

### Example:

<pre>
    
    {
        "id": 3247,
        "premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
        "hypothesis": "S'acorden unes recomanacions per les persones migrades a Marràqueix",
        "label": "0"
    },
    {
        "id": 2825,
        "premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
        "hypothesis": "Les persones migrades seran acollides a Marràqueix",
        "label": "1"
    },
    {
        "id": 2431,
        "premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
        "hypothesis": "L'acord impulsat per l'ONU lluny de tancar-se",
        "label": "2"
    },
</pre>

### Data Fields

- premise: text
- hypothesis: text related to the premise
- label: relation between premise and hypothesis:
    * 0: entailment
    * 1: neutral
    * 2: contradiction
    
### Data Splits

* dev.json: 2116 examples
* test.json: 2117 examples
* train.json: 16930 examples

## Dataset Creation

### Curation Rationale
We created this dataset to contribute to the development of language models in Catalan, a low-resource language.

### Source Data

Source sentences are extracted from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349) and from [VilaWeb](https://www.vilaweb.cat) newswire.

#### Initial Data Collection and Normalization

12000 sentences from the BSC [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349), together with 6200 headers from the Catalan news site [VilaWeb](https://www.vilaweb.cat), were chosen randomly. We filtered them by different criteria, such as length and stand-alone intelligibility. For each selected text, we commissioned 3 hypotheses (one for each entailment category) to be written by a team of native annotators. 

Some sentence pairs were excluded because of inconsistencies. 

#### Who are the source language producers?

The Catalan Textual Corpus corpus consists of several corpora gathered from web crawling and public corpora. More information can be found [here](https://doi.org/10.5281/zenodo.4519349).

[VilaWeb](https://www.vilaweb.cat) is a Catalan newswire.

### Annotations

#### Annotation process

We commissioned 3 hypotheses (one for each entailment category) to be written by a team of annotators. 

#### Who are the annotators?

Annotators are a team of native language collaborators from two independent companies.

### Personal and Sensitive Information

No personal or sensitive information included.

## Considerations for Using the Data

### Social Impact of Dataset

We hope this dataset contributes to the development of language models in Catalan, a low-resource language.

### Discussion of Biases

[N/A]

### Other Known Limitations

[N/A]

## Additional Information

### Dataset Curators

Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)

This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).


### Licensing Information

This work is licensed under an <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.

### Citation Information

```

@inproceedings{armengol-estape-etal-2021-multilingual,
    title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
    author = "Armengol-Estap{\'e}, Jordi  and
      Carrino, Casimiro Pio  and
      Rodriguez-Penagos, Carlos  and
      de Gibert Bonet, Ona  and
      Armentano-Oller, Carme  and
      Gonzalez-Agirre, Aitor  and
      Melero, Maite  and
      Villegas, Marta",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.437",
    doi = "10.18653/v1/2021.findings-acl.437",
    pages = "4933--4946",
}

```

[DOI](https://doi.org/10.5281/zenodo.4529183)