Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
natural-language-inference
Languages:
Catalan
Size:
10K - 100K
ArXiv:
License:
File size: 6,497 Bytes
c096dbe 34d65c7 c2567ac d719455 c2567ac 34d65c7 871db02 a72eaa5 66e644e a72eaa5 66e644e a72eaa5 66e644e a72eaa5 66e644e a72eaa5 66e644e a72eaa5 34d65c7 c096dbe 1c5a879 c096dbe 34d65c7 c096dbe 0d30577 0cacc5f 34d65c7 0cacc5f c096dbe 34d65c7 c096dbe 8371e4a c096dbe e577807 c096dbe feff109 c096dbe 29bddd5 c096dbe 34d65c7 c096dbe f0d4825 c096dbe 34d65c7 c096dbe 34d65c7 c096dbe 34d65c7 c096dbe 34d65c7 c096dbe 34d65c7 c096dbe 34d65c7 c096dbe c82379a c096dbe 0d30577 34d65c7 c096dbe 0d30577 34d65c7 d15c191 34d65c7 0021ba9 50111e3 34d65c7 c096dbe 34d65c7 c096dbe 0d30577 c096dbe 34d65c7 b2cbe03 34d65c7 0d30577 34d65c7 0d30577 34d65c7 c096dbe c7cdb32 c096dbe 8371e4a 0d30577 34d65c7 c096dbe 34d65c7 c096dbe 34d65c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ca
license:
- cc-by-nc-nd-4.0
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets: []
task_categories:
- text-classification
task_ids:
- natural-language-inference
pretty_name: teca
dataset_info:
features:
- name: id
dtype: string
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 3235458
num_examples: 16930
- name: validation
num_bytes: 405380
num_examples: 2116
- name: test
num_bytes: 401081
num_examples: 2117
download_size: 2735358
dataset_size: 4041919
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for TE-ca
## Dataset Description
- **Website:** https://zenodo.org/record/4761458
- **Repository** [HuggingFace](https://huggingface.co/projecte-aina)
- **Paper:** [Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan](https://arxiv.org/abs/2107.07903)
- **Point of Contact:** [Language Technologies Unit](langtech@bsc.es)
### Dataset Summary
TE-ca is a dataset of textual entailment in Catalan, which contains 21,163 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction or neutral).
This dataset was developed by [BSC TeMU](https://temu.bsc.es/) as part of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina/), to enrich the [Catalan Language Understanding Benchmark (CLUB)](https://club.aina.bsc.es/).
This work is licensed under an <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
### Supported Tasks and Leaderboards
Textual entailment, Text classification, Language Model
### Languages
The dataset is in Catalan (`ca-ES`).
## Dataset Structure
### Data Instances
Three JSON files, one for each split.
### Example:
<pre>
{
"id": 3247,
"premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
"hypothesis": "S'acorden unes recomanacions per les persones migrades a Marràqueix",
"label": "0"
},
{
"id": 2825,
"premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
"hypothesis": "Les persones migrades seran acollides a Marràqueix",
"label": "1"
},
{
"id": 2431,
"premise": "L'ONU adopta a Marràqueix un pacte no vinculant per les migracions",
"hypothesis": "L'acord impulsat per l'ONU lluny de tancar-se",
"label": "2"
},
</pre>
### Data Fields
- premise: text
- hypothesis: text related to the premise
- label: relation between premise and hypothesis:
* 0: entailment
* 1: neutral
* 2: contradiction
### Data Splits
* dev.json: 2116 examples
* test.json: 2117 examples
* train.json: 16930 examples
## Dataset Creation
### Curation Rationale
We created this dataset to contribute to the development of language models in Catalan, a low-resource language.
### Source Data
Source sentences are extracted from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349) and from [VilaWeb](https://www.vilaweb.cat) newswire.
#### Initial Data Collection and Normalization
12000 sentences from the BSC [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349), together with 6200 headers from the Catalan news site [VilaWeb](https://www.vilaweb.cat), were chosen randomly. We filtered them by different criteria, such as length and stand-alone intelligibility. For each selected text, we commissioned 3 hypotheses (one for each entailment category) to be written by a team of native annotators.
Some sentence pairs were excluded because of inconsistencies.
#### Who are the source language producers?
The Catalan Textual Corpus corpus consists of several corpora gathered from web crawling and public corpora. More information can be found [here](https://doi.org/10.5281/zenodo.4519349).
[VilaWeb](https://www.vilaweb.cat) is a Catalan newswire.
### Annotations
#### Annotation process
We commissioned 3 hypotheses (one for each entailment category) to be written by a team of annotators.
#### Who are the annotators?
Annotators are a team of native language collaborators from two independent companies.
### Personal and Sensitive Information
No personal or sensitive information included.
## Considerations for Using the Data
### Social Impact of Dataset
We hope this dataset contributes to the development of language models in Catalan, a low-resource language.
### Discussion of Biases
[N/A]
### Other Known Limitations
[N/A]
## Additional Information
### Dataset Curators
Text Mining Unit (TeMU) at the Barcelona Supercomputing Center (bsc-temu@bsc.es)
This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina).
### Licensing Information
This work is licensed under an <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
### Citation Information
```
@inproceedings{armengol-estape-etal-2021-multilingual,
title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
author = "Armengol-Estap{\'e}, Jordi and
Carrino, Casimiro Pio and
Rodriguez-Penagos, Carlos and
de Gibert Bonet, Ona and
Armentano-Oller, Carme and
Gonzalez-Agirre, Aitor and
Melero, Maite and
Villegas, Marta",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.437",
doi = "10.18653/v1/2021.findings-acl.437",
pages = "4933--4946",
}
```
[DOI](https://doi.org/10.5281/zenodo.4529183)
|