Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Catalan
ArXiv:
Libraries:
Datasets
pandas
License:
ccasimiro commited on
Commit
c096dbe
·
1 Parent(s): 1d3bc5d

Upload dataset

Browse files
Files changed (7) hide show
  1. README.md +128 -0
  2. dev.json +0 -0
  3. splitter.py +41 -0
  4. splitter_with_ids.py +42 -0
  5. teca.py +116 -0
  6. test.json +0 -0
  7. train.json +0 -0
README.md ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ languages:
3
+ - ca
4
+ ---
5
+ # TECA: Textual Entailment Catalan dataset
6
+
7
+ ## BibTeX citation
8
+
9
+ If you use any of these resources (datasets or models) in your work, please cite our latest paper:
10
+
11
+ ```bibtex
12
+ @inproceedings{armengol-estape-etal-2021-multilingual,
13
+ title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
14
+ author = "Armengol-Estap{\'e}, Jordi and
15
+ Carrino, Casimiro Pio and
16
+ Rodriguez-Penagos, Carlos and
17
+ de Gibert Bonet, Ona and
18
+ Armentano-Oller, Carme and
19
+ Gonzalez-Agirre, Aitor and
20
+ Melero, Maite and
21
+ Villegas, Marta",
22
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
23
+ month = aug,
24
+ year = "2021",
25
+ address = "Online",
26
+ publisher = "Association for Computational Linguistics",
27
+ url = "https://aclanthology.org/2021.findings-acl.437",
28
+ doi = "10.18653/v1/2021.findings-acl.437",
29
+ pages = "4933--4946",
30
+ }
31
+ ```
32
+
33
+
34
+ ## Digital Object Identifier (DOI) and access to dataset files
35
+
36
+ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.4761458.svg)](https://doi.org/10.5281/zenodo.4761458)
37
+
38
+
39
+ ## Introduction
40
+
41
+ TECA consists of two subsets of textual entailment in Catalan, *catalan_TE1* and *vilaweb_TE*, which contain 14997 and 6166 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction or neutral).
42
+
43
+ This dataset was developed by BSC TeMU as part of the AINA project and intended as part of the Catalan Language Understanding Benchmark (CLUB). It is part of the Catalan Language Understanding Benchmark (CLUB) as presented in:
44
+
45
+ Armengol-Estapé J., Carrino CP., Rodriguez-Penagos C., de Gibert Bonet O., Armentano-Oller C., Gonzalez-Agirre A., Melero M., and Villegas M., Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan". Findings of ACL 2021 (ACL-IJCNLP 2021).
46
+
47
+
48
+ ### Supported Tasks and Leaderboards
49
+
50
+ Text classification, Language Model
51
+
52
+ ### Languages
53
+
54
+ CA- Catalan
55
+
56
+ ### Directory structure
57
+
58
+ * **.gitattributes**
59
+ * **README.md**
60
+ * **dev.json** - json-formatted file with the dev split of the dataset
61
+ * **teca.py** - data loader script
62
+ * **test.json** - json-formatted file with the test split of the dataset
63
+ * **train.json** - json-formatted file with the train split of the dataset
64
+
65
+ ## Dataset Structure
66
+
67
+ ### Data Instances
68
+
69
+ Two JSON files, one for each subset.
70
+
71
+ ### Example:
72
+
73
+ <pre>
74
+ {
75
+ "id": 6940,
76
+ "premise": "Podriem posar uns bons filtres a les xemeneies de les quimiques per tal de que poguin seguint havent"hypothesis": "Caldria eliminar tots els filtres de les xemeneies de les qu\u00edmiques.",
77
+ "label": "2"
78
+ }
79
+ </pre>
80
+
81
+ ### Number of sentence pairs
82
+ * catalan_TE1: 14,997
83
+ * vilaweb_TE: 6,166
84
+
85
+ ## Dataset Creation
86
+
87
+ ### Methodology
88
+
89
+ catalan_TE1: 12000 sentences were chosen randomly from the BSC Catalan Textual Corpus, and filtered by different criteria, such as length and
90
+ stand-alone intelligibility. From 6000 text sentences, we commissioned 3 hypotheses (one for each entailment category) to be written by a team of
91
+ annotators.
92
+
93
+ vilaweb_TE: We randomly selected 6200 headers from the Catalan news site Vilaweb and filtered them to obtain 2100 text sentences. For each
94
+ text, 3 hypotheses were likewise commissioned.
95
+
96
+ ### Curation Rationale
97
+
98
+ In both sub-datasets, some sentence pairs were excluded because of inconsistencies.
99
+
100
+ ### Source Data
101
+
102
+ #### Initial Data Collection and Normalization
103
+
104
+ Source sentences are extracted from the [Catalan Textual Corpus](https://doi.org/10.5281/zenodo.4519349), and from Vilaweb newswire.
105
+
106
+ ## Annotations
107
+
108
+ #### Inter-annotator agreement:
109
+
110
+ From 600 randomly selected samples, the inter-annotator agreement was 83,57%.
111
+
112
+ ### Dataset Curators
113
+
114
+ Casimiro Pio Carrino, Carlos Rodríguez and Carme Armentano, from BSC-CNS.
115
+
116
+ ### Personal and Sensitive Information
117
+
118
+ No personal or sensitive information is included.
119
+
120
+ ## Contact
121
+
122
+ - Carlos Rodríguez-Penagos (carlos.rodriguez1@bsc.es)
123
+ - Carme Armentano-Oller (carme.armentano@bsc.es)
124
+
125
+ ## License
126
+
127
+ <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/"><img alt="Attribution-NonCommercial-NoDerivatives 4.0 International License" style="border-width:0" src="http://d2klr1ixr44jla.cloudfront.net/306/125/0.5-0.5/assets/images/55132bfeb13b7b027c000041.png" width="100"/></a><br />This work is licensed under an <a rel="license" href="https://creativecommons.org/licenses/by-nc-nd/4.0/">Attribution-NonCommercial-NoDerivatives 4.0 International License</a>.
128
+
dev.json ADDED
The diff for this file is too large to render. See raw diff
 
splitter.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+
5
+ # both files downloaded from https://zenodo.org/record/4621378
6
+ path_to_teca1 = 'dataset_te1.json'
7
+ path_to_teca2 = 'dataset_te_vilaweb.json'
8
+
9
+ # load data to pandas dataframes
10
+ teca1 = pd.read_json(path_to_teca1) # Shape: (14997, 4)
11
+ teca2 = pd.read_json(path_to_teca2) # Shape: (6166, 4)
12
+ teca = pd.concat([teca1, teca2]) # Shape: (21163, 4)
13
+
14
+ # remove "id" column, now columns are: ['premise', 'hypothesis', 'label']
15
+ teca.drop(['id'], axis=1, inplace=True)
16
+
17
+ # shuffle rows
18
+ teca = teca.sample(frac=1).reset_index(drop=True)
19
+
20
+ # stratified split with harcoded percentages: 80% train, 10% dev, 10% test
21
+ train, dev_test = train_test_split(teca, test_size=0.2, random_state=42, stratify=teca['label'])
22
+ dev, test = train_test_split(dev_test, test_size=0.5, random_state=42, stratify=dev_test['label'])
23
+
24
+ # report some stats
25
+ print('### VALUE COUNTS TECA ###')
26
+ print(teca['label'].value_counts())
27
+ print('### VALUE COUNTS TRAIN ###')
28
+ print(train['label'].value_counts())
29
+ print('### VALUE COUNTS DEV ###')
30
+ print(dev['label'].value_counts())
31
+ print('### VALUE COUNTS TEST ###')
32
+ print(test['label'].value_counts())
33
+ print('train shape:', train.shape[0], ', dev shape:', dev.shape[0], ', test shape:', test.shape[0])
34
+
35
+ # save train/dev/test sets as json files
36
+ sets = {'train': train, 'dev': dev, 'test': test}
37
+ for key in sets:
38
+ set_dict = sets[key].to_dict('records')
39
+ json_content = {"version": '1.0.1', "data": set_dict}
40
+ with open(key+'.json', 'w') as f:
41
+ json.dump(json_content, f)
splitter_with_ids.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+
5
+ # both files downloaded from https://zenodo.org/record/4621378
6
+ path_to_teca1 = 'dataset_te1.json'
7
+ path_to_teca2 = 'dataset_te_vilaweb.json'
8
+
9
+ teca1 = pd.read_json(path_to_teca1) # Shape: (14997, 4)
10
+ teca2 = pd.read_json(path_to_teca2) # Shape: (6166, 4)
11
+
12
+ teca1['id'] = 'te1_' + teca1['id'].astype(str)
13
+ teca2['id'] = 'vila_' + teca2['id'].astype(str)
14
+
15
+ teca = pd.concat([teca1, teca2]) # Shape: (21163, 4)
16
+ #teca.drop(['id'], axis=1, inplace=True) # now columns are: ['premise', 'hypothesis', 'label']
17
+ teca = teca.sample(frac=1).reset_index(drop=True) # shuffle rows
18
+
19
+ print('### VALUE COUNTS TECA ###')
20
+ print(teca['label'].value_counts())
21
+
22
+ # stratified split with harcoded percentages: 80% train, 10% dev, 10% test
23
+ train, dev_test = train_test_split(teca, test_size=0.2, random_state=42, stratify=teca['label'])
24
+ dev, test = train_test_split(dev_test, test_size=0.5, random_state=42, stratify=dev_test['label'])
25
+
26
+ print('### VALUE COUNTS TRAIN ###')
27
+ print(train['label'].value_counts())
28
+ print('### VALUE COUNTS DEV ###')
29
+ print(dev['label'].value_counts())
30
+ print('### VALUE COUNTS TEST ###')
31
+ print(test['label'].value_counts())
32
+ print('train shape:', train.shape[0], ', dev shape:', dev.shape[0], ', test shape:', test.shape[0])
33
+
34
+ print(train.head())
35
+
36
+ sets = {'train': train, 'dev': dev, 'test': test, 'full': teca}
37
+
38
+ for key in sets:
39
+ set_dict = sets[key].to_dict('records')
40
+ json_content = {"version": '1.0.1', "data": set_dict}
41
+ with open(key+'.json', 'w') as f:
42
+ json.dump(json_content, f)
teca.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Loading script for the TECA dataset.
2
+ import json
3
+ import datasets
4
+
5
+ logger = datasets.logging.get_logger(__name__)
6
+
7
+ _CITATION = """
8
+ @inproceedings{armengol-estape-etal-2021-multilingual,
9
+ title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan",
10
+ author = "Armengol-Estap{\'e}, Jordi and
11
+ Carrino, Casimiro Pio and
12
+ Rodriguez-Penagos, Carlos and
13
+ de Gibert Bonet, Ona and
14
+ Armentano-Oller, Carme and
15
+ Gonzalez-Agirre, Aitor and
16
+ Melero, Maite and
17
+ Villegas, Marta",
18
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
19
+ month = aug,
20
+ year = "2021",
21
+ address = "Online",
22
+ publisher = "Association for Computational Linguistics",
23
+ url = "https://aclanthology.org/2021.findings-acl.437",
24
+ doi = "10.18653/v1/2021.findings-acl.437",
25
+ pages = "4933--4946",
26
+ }
27
+ """
28
+
29
+ _DESCRIPTION = """
30
+ TECA consists of two subsets of textual entailment in Catalan, *catalan_TE1* and *vilaweb_TE*, which contain 14997 and 6166 pairs of premises and hypotheses, annotated according to the inference relation they have (implication, contradiction or neutral). This dataset was developed by BSC TeMU as part of the AINA project and intended as part of the Catalan Language Understanding Benchmark (CLUB).
31
+ """
32
+
33
+ _HOMEPAGE = """https://zenodo.org/record/4621378"""
34
+
35
+ # TODO: upload datasets to github
36
+ _URL = "https://huggingface.co/datasets/BSC-TeMU/teca/resolve/main/"
37
+ _TRAINING_FILE = "train.json"
38
+ _DEV_FILE = "dev.json"
39
+ _TEST_FILE = "test.json"
40
+
41
+
42
+ class tecaConfig(datasets.BuilderConfig):
43
+ """ Builder config for the TECA dataset """
44
+
45
+ def __init__(self, **kwargs):
46
+ """BuilderConfig for TECA.
47
+ Args:
48
+ **kwargs: keyword arguments forwarded to super.
49
+ """
50
+ super(tecaConfig, self).__init__(**kwargs)
51
+
52
+
53
+ class teca(datasets.GeneratorBasedBuilder):
54
+ """ TECA Dataset """
55
+
56
+ BUILDER_CONFIGS = [
57
+ tecaConfig(
58
+ name="teca",
59
+ version=datasets.Version("1.0.1"),
60
+ description="teca dataset",
61
+ ),
62
+ ]
63
+
64
+ def _info(self):
65
+ return datasets.DatasetInfo(
66
+ description=_DESCRIPTION,
67
+ features=datasets.Features(
68
+ {
69
+ "id": datasets.Value("string"),
70
+ "premise": datasets.Value("string"),
71
+ "hypothesis": datasets.Value("string"),
72
+ "label": datasets.features.ClassLabel
73
+ (names=
74
+ [
75
+ "entailment",
76
+ "neutral",
77
+ "contradiction"
78
+ ]
79
+ ),
80
+ }
81
+ ),
82
+ homepage=_HOMEPAGE,
83
+ citation=_CITATION,
84
+ )
85
+
86
+ def _split_generators(self, dl_manager):
87
+ """Returns SplitGenerators."""
88
+ urls_to_download = {
89
+ "train": f"{_URL}{_TRAINING_FILE}",
90
+ "dev": f"{_URL}{_DEV_FILE}",
91
+ "test": f"{_URL}{_TEST_FILE}",
92
+ }
93
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
94
+
95
+ return [
96
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
97
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
98
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
99
+ ]
100
+
101
+ def _generate_examples(self, filepath):
102
+ """This function returns the examples in the raw (text) form."""
103
+ logger.info("generating examples from = %s", filepath)
104
+ with open(filepath, encoding="utf-8") as f:
105
+ data_dict = json.load(f)
106
+ for id_, article in enumerate(data_dict["data"]):
107
+ original_id = article["id"]
108
+ premise = article["premise"]
109
+ hypothesis = article["hypothesis"]
110
+ label = article["label"]
111
+ yield id_, {
112
+ "id": original_id,
113
+ "premise": premise,
114
+ "hypothesis": hypothesis,
115
+ "label": label,
116
+ }
test.json ADDED
The diff for this file is too large to render. See raw diff
 
train.json ADDED
The diff for this file is too large to render. See raw diff