Datasets:
SLPL
/

Modalities:
Text
Languages:
Persian
ArXiv:
Libraries:
Datasets
License:
File size: 10,356 Bytes
597590d
7f78cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597590d
7f78cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2977056
7f78cd9
250322e
7f78cd9
 
250322e
7f78cd9
 
 
250322e
7f78cd9
250322e
 
7f78cd9
 
 
250322e
7f78cd9
 
 
 
250322e
 
7f78cd9
250322e
7f78cd9
 
250322e
7f78cd9
 
 
 
bf8782b
7f78cd9
 
 
 
 
 
 
250322e
 
7f78cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80f86af
7f78cd9
 
 
80f86af
7f78cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
030c30c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
annotations_creators:
- SLPL
language_creators:
- SLPL
language:
- fa
license:
- mit
multilinguality:
- monolingual
size_categories:
- 200M<n<300M
task_categories:
- language-modeling
- masked-language-modeling
task_ids:
- language-modeling
- masked-language-modeling
pretty_name: naab (A ready-to-use plug-and-play corpus in Farsi)
---

# naab: A ready-to-use plug-and-play corpus in Farsi

## Table of Contents
- [Dataset Card Creation Guide](#dataset-card-creation-guide)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)
    - [Data Splits](#data-splits)
  - [Dataset Creation](#dataset-creation)
    - [Curation Rationale](#curation-rationale)
    - [Source Data](#source-data)
      - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
      - [Who are the source language producers?](#who-are-the-source-language-producers)
    - [Annotations](#annotations)
      - [Annotation process](#annotation-process)
      - [Who are the annotators?](#who-are-the-annotators)
    - [Personal and Sensitive Information](#personal-and-sensitive-information)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Sharif Speech and Language Processing Lab](https://huggingface.co/SLPL)
- **Paper:** [If the dataset was introduced by a paper or there was a paper written describing the dataset, add URL here (landing page for Arxiv paper preferred)]()
- **Point of Contact:** [Sadra Sabouri](mailto:sabouri.sadra@gmail.com)

### Dataset Summary
naab is the biggest cleaned and ready-to-use open-source textual corpus in Farsi. It contains about 130GB of data, 250 million paragraphs, and 15 billion words. The project name is derived from the Farsi word ناب which means pure and high-grade. We also provide the raw version of the corpus called naab-raw and an easy-to-use pre-processor that can be employed by those who wanted to make a customized corpus.

### Supported Tasks and Leaderboards

This corpus can be used for training all language models which can be trained by mask language modeling.

- `language-modeling`
- `masked-language-modeling`

### Languages

This corpus only contains the Farsi language.


## Dataset Structure

Each row of the dataset will look like something like the below:
```json
{
  'text': "این یک تست برای نمایش یک پاراگراف در پیکره متنی ناب است.",
}
```
+ `text` : the textual paragraph.


### Data Splits

This dataset includes two splits (`train` and `test`).

Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g. if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.

Provide the sizes of each split. As appropriate, provide any descriptive statistics for the features, such as average length.  For example:

|                         | train | test |
|-------------------------|------:|-----:|
| Input Sentences         |   225892925   |   11083851   |
| Average Sentence Length |   61    |   25   |

## Dataset Creation

### Curation Rationale

What need motivated the creation of this dataset? What are some of the reasons underlying the major choices involved in putting it together?

### Source Data

This section describes the source data (e.g. news text and headlines, social media posts, translated sentences,...)

#### Initial Data Collection and Normalization

Describe the data collection process. Describe any criteria for data selection or filtering. List any key words or search terms used. If possible, include runtime information for the collection process.

If data was collected from other pre-existing datasets, link to source here and to their [Hugging Face version](https://huggingface.co/datasets/dataset_name).

If the data was modified or normalized after being collected (e.g. if the data is word-tokenized), describe the process and the tools used.

#### Who are the source language producers?

State whether the data was produced by humans or machine generated. Describe the people or systems who originally created the data.

If available, include self-reported demographic or identity information for the source data creators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was created (for example, if the producers were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

Describe other people represented or mentioned in the data. Where possible, link to references for the information.

### Annotations

If the dataset contains annotations which are not part of the initial data collection, describe them in the following paragraphs.

#### Annotation process

If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes.

#### Who are the annotators?

If annotations were collected for the source data (such as class labels or syntactic parses), state whether the annotations were produced by humans or machine generated.

Describe the people or systems who originally created the annotations and their selection criteria if applicable.

If available, include self-reported demographic or identity information for the annotators, but avoid inferring this information. Instead state that this information is unknown. See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was annotated (for example, if the annotators were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

### Personal and Sensitive Information

State whether the dataset uses identity categories and, if so, how the information is used. Describe where this information comes from (i.e. self-reporting, collecting from profiles, inferring, etc.). See [Larson 2017](https://www.aclweb.org/anthology/W17-1601.pdf) for using identity categories as a variables, particularly gender. State whether the data is linked to individuals and whether those individuals can be identified in the dataset, either directly or indirectly (i.e., in combination with other data).

State whether the dataset contains other data that might be considered sensitive (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history).  

If efforts were made to anonymize the data, describe the anonymization process.

## Considerations for Using the Data

### Social Impact of Dataset

Farsi is a language used by millions of people, for thousands of years; therefore, there exists numerous resources for this language. However, no-one has ever published a big enough easy to use corpus of textual data. Our dataset eases the path of pre-training and fine-tuning Farsi Language Models (LMs) in self-supervised manner which can lead to better tools for retention and development of Farsi. As a matter of fact, the informal portion of naab contains various dialects including, Turkish, Luri, etc. which are under-represented languages. Although the amount of data is comparably small, but it can be helpful in training a multi-lingual Tokenizer for Farsi variations. As mentioned before, some parts of our dataset are crawled from social media which in result means it contains ethnic, religious, and gender biases.

### Discussion of Biases

During Exploratory Data Analysis (EDA), we found samples of data including biased opinions about race, religion, and gender. Based on the result we saw in our samples, only a small portion of informal data can be considered biased. Therefore, we anticipate that it won’t affect the trained language model on this data. Furthermore, we decided to keep this small part of data as it may become helpful in training models for classifying harmful and hateful texts.

### Other Known Limitations

If studies of the datasets have outlined other limitations of the dataset, such as annotation artifacts, please outline and cite them here.

## Additional Information

### Dataset Curators

List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.

### Licensing Information

Provide the license and link to the license webpage if available.

### Citation Information

Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
```
@article{article_id,
  author    = {Author List},
  title     = {Dataset Paper Title},
  journal   = {Publication Venue},
  year      = {2525}
}
```

If the dataset has a [DOI](https://www.doi.org/), please provide it here.

### Contributions

Thanks to [@sadrasabouri](https://github.com/sadrasabouri) and [@elnazrahmati](https://github.com/elnazrahmati) for adding this dataset.