# Datasets: RaymondLi /perturbed_humaneval

ArXiv:
stringlengths
11
13
prompt
stringlengths
97
1.72k
entry_point
stringlengths
1
30
canonical_solution
stringlengths
16
483
test
stringlengths
117
1.8k
seed
int32
0
9
perturbation_name
stringclasses
6 values
partial
stringlengths
265
2.05k
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: # Check if in given list of numbers, are any two numbers closer to each other than # given threshold. # >>> has_close_elements([1.0, 2.0, 3.0], 0.5) # False # >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) # True for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2)
has_close_elements
if distance < threshold: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) # print('@@this is the line to split##') if distance < threshold: return True return False
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: # Input to this function is a string containing multiple groups of nested parentheses. Your goal is to # separate those group into separate strings and return the list of those. # Separate groups are balanced (each open brace is properly closed) and not nested within each other # Ignore any spaces in the input string. # >>> separate_paren_groups('( ) (( )) (( )( ))') # ['()', '(())', '(()())'] result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c)
separate_paren_groups
elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [ '(()())', '((()))', '()', '((())()())' ] assert candidate('() (()) ((())) (((())))') == [ '()', '(())', '((()))', '(((())))' ] assert candidate('(()(())((())))') == [ '(()(())((())))' ] assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']
0
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """ result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) # print('@@this is the line to split##') elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
HumanEval/2
def truncate_number(number: float) -> float: # Given a positive floating point number, it can be decomposed into # and integer part (largest integer smaller than given number) and decimals # (leftover part always smaller than 1). # Return the decimal part of the number. # >>> truncate_number(3.5) # 0.5
truncate_number
return number % 1.0
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3.5) == 0.5 assert abs(candidate(1.33) - 0.33) < 1e-6 assert abs(candidate(123.456) - 0.456) < 1e-6
0
null
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: # You're given a list of deposit and withdrawal operations on a bank account that starts with # zero balance. Your task is to detect if at any point the balance of account fallls below zero, and # at that point function should return True. Otherwise it should return False. # >>> below_zero([1, 2, 3]) # False # >>> below_zero([1, 2, -4, 5]) # True balance = 0 for op in operations: balance += op
below_zero
if balance < 0: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == False assert candidate([1, 2, -3, 1, 2, -3]) == False assert candidate([1, 2, -4, 5, 6]) == True assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True
0
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ balance = 0 for op in operations: balance += op # print('@@this is the line to split##') if balance < 0: return True return False
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: # For a given list of input numbers, calculate Mean Absolute Deviation # around the mean of this dataset. # Mean Absolute Deviation is the average absolute difference between each # element and a centerpoint (mean in this case): # MAD = average | x - x_mean | # >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) # 1.0 mean = sum(numbers) / len(numbers)
mean_absolute_deviation
return sum(abs(x - mean) for x in numbers) / len(numbers)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6
0
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """ mean = sum(numbers) / len(numbers) # print('@@this is the line to split##') return sum(abs(x - mean) for x in numbers) / len(numbers)
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: # Insert a number 'delimeter' between every two consecutive elements of input list numbers' # >>> intersperse([], 4) # [] # >>> intersperse([1, 2, 3], 4) # [1, 4, 2, 4, 3] if not numbers: return [] result = [] for n in numbers[:-1]:
intersperse
result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 7) == [] assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2] assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]
0
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """ if not numbers: return [] result = [] for n in numbers[:-1]: # print('@@this is the line to split##') result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: # Input to this function is a string represented multiple groups for nested parentheses separated by spaces. # For each of the group, output the deepest level of nesting of parentheses. # E.g. (()()) has maximum two levels of nesting while ((())) has three. # >>> parse_nested_parens('(()()) ((())) () ((())()())') # [2, 3, 1, 3] def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1
parse_nested_parens
max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3] assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4] assert candidate('(()(())((())))') == 
0
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """ def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 # print('@@this is the line to split##') max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: # Filter an input list of strings only for ones that contain given substring # >>> filter_by_substring([], 'a') # [] # >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') # ['abc', 'bacd', 'array']
filter_by_substring
return [x for x in strings if substring in x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'] assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'] assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']
0
null
HumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: # For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. # Empty sum should be equal to 0 and empty product should be equal to 1. # >>> sum_product([]) # (0, 1) # >>> sum_product([1, 2, 3, 4]) # (10, 24) sum_value = 0 prod_value = 1
sum_product
for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == (0, 1) assert candidate([1, 1, 1]) == (3, 1) assert candidate([100, 0]) == (100, 0) assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7) assert candidate() == (10, 10)
0
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """ sum_value = 0 prod_value = 1 # print('@@this is the line to split##') for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
HumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: # From a given list of integers, generate a list of rolling maximum element found until given moment # in the sequence. # >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) # [1, 2, 3, 3, 3, 4, 4] running_max = None result = [] for n in numbers: if running_max is None: running_max = n
rolling_max
else: running_max = max(running_max, n) result.append(running_max) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4] assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]
0
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """ running_max = None result = [] for n in numbers: if running_max is None: running_max = n # print('@@this is the line to split##') else: running_max = max(running_max, n) result.append(running_max) return result
HumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: # Find the shortest palindrome that begins with a supplied string. # Algorithm idea is simple: # - Find the longest postfix of supplied string that is a palindrome. # - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. # >>> make_palindrome('') # '' # >>> make_palindrome('cat') # 'catac' # >>> make_palindrome('cata') # 'catac' if not string: return '' beginning_of_suffix = 0
make_palindrome
while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('x') == 'x' assert candidate('xyz') == 'xyzyx' assert candidate('xyx') == 'xyx' assert candidate('jerry') == 'jerryrrej'
0
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """ if not string: return '' beginning_of_suffix = 0 # print('@@this is the line to split##') while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
HumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: # Input are two strings a and b consisting only of 1s and 0s. # Perform binary XOR on these inputs and return result also as a string. # >>> string_xor('010', '110') # '100' def xor(i, j): if i == j: return '0'
string_xor
else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('111000', '101010') == '010010' assert candidate('1', '1') == '0' assert candidate('0101', '0000') == '0101'
0
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """ def xor(i, j): if i == j: return '0' # print('@@this is the line to split##') else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
HumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: # Out of list of strings, return the longest one. Return the first one in case of multiple # strings of the same length. Return None in case the input list is empty. # >>> longest([]) # >>> longest(['a', 'b', 'c']) # 'a' # >>> longest(['a', 'bb', 'ccc']) # 'ccc' if not strings: return None
longest
maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == None assert candidate(['x', 'y', 'z']) == 'x' assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'
0
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """ if not strings: return None # print('@@this is the line to split##') maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
HumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: # Return a greatest common divisor of two integers a and b # >>> greatest_common_divisor(3, 5) # 1 # >>> greatest_common_divisor(25, 15) # 5 while b:
greatest_common_divisor
a, b = b, a % b return a
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3, 7) == 1 assert candidate(10, 15) == 5 assert candidate(49, 14) == 7 assert candidate(144, 60) == 12
0
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """ while b: # print('@@this is the line to split##') a, b = b, a % b return a
HumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: # Return list of all prefixes from shortest to longest of the input string # >>> all_prefixes('abc') # ['a', 'ab', 'abc'] result = []
all_prefixes
for i in range(len(string)): result.append(string[:i+1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == [] assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'] assert candidate('WWW') == ['W', 'WW', 'WWW']
0
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """ result = [] # print('@@this is the line to split##') for i in range(len(string)): result.append(string[:i+1]) return result
HumanEval/15
def string_sequence(n: int) -> str: # Return a string containing space-delimited numbers starting from 0 upto n inclusive. # >>> string_sequence(0) # '0' # >>> string_sequence(5) # '0 1 2 3 4 5'
string_sequence
return ' '.join([str(x) for x in range(n + 1)])
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(0) == '0' assert candidate(3) == '0 1 2 3' assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'
0
null
HumanEval/16
def count_distinct_characters(string: str) -> int: # Given a string, find out how many distinct characters (regardless of case) does it consist of # >>> count_distinct_characters('xyzXYZ') # 3 # >>> count_distinct_characters('Jerry') # 4
count_distinct_characters
return len(set(string.lower()))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == 0 assert candidate('abcde') == 5 assert candidate('abcde' + 'cade' + 'CADE') == 5 assert candidate('aaaaAAAAaaaa') == 1 assert candidate('Jerry jERRY JeRRRY') == 5
0
null
HumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: # Input to this function is a string representing musical notes in a special ASCII format. # Your task is to parse this string and return list of integers corresponding to how many beats does each # not last. # Here is a legend: # 'o' - whole note, lasts four beats # 'o|' - half note, lasts two beats # '.|' - quater note, lasts one beat # >>> parse_music('o o| .| o| o| .| .| .| .| o o') # [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] note_map = {'o': 4, 'o|': 2, '.|': 1}
parse_music
return [note_map[x] for x in music_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == [] assert candidate('o o o o') == [4, 4, 4, 4] assert candidate('.| .| .| .|') == [1, 1, 1, 1] assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4] assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]
0
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """ note_map = {'o': 4, 'o|': 2, '.|': 1} # print('@@this is the line to split##') return [note_map[x] for x in music_string.split(' ') if x]
HumanEval/18
def how_many_times(string: str, substring: str) -> int: # Find how many times a given substring can be found in the original string. Count overlaping cases. # >>> how_many_times('', 'a') # 0 # >>> how_many_times('aaa', 'a') # 3 # >>> how_many_times('aaaa', 'aa') # 3 times = 0 for i in range(len(string) - len(substring) + 1):
how_many_times
if string[i:i+len(substring)] == substring: times += 1 return times
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('', 'x') == 0 assert candidate('xyxyxyx', 'x') == 4 assert candidate('cacacacac', 'cac') == 4 assert candidate('john doe', 'john') == 1
0
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """ times = 0 for i in range(len(string) - len(substring) + 1): # print('@@this is the line to split##') if string[i:i+len(substring)] == substring: times += 1 return times
HumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: # Input is a space-delimited string of numberals from 'zero' to 'nine'. # Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. # Return the string with numbers sorted from smallest to largest # >>> sort_numbers('three one five') # 'one three five' value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4,
sort_numbers
'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('three') == 'three' assert candidate('three five nine') == 'three five nine' assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine' assert candidate('six five four three two one zero') == 'zero one two three four five six'
0
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """ value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, # print('@@this is the line to split##') 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
HumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: # From a supplied list of numbers (of length at least two) select and return two that are the closest to each # other and return them in order (smaller number, larger number). # >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) # (2.0, 2.2) # >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) # (2.0, 2.0) closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2)
find_closest_elements
closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0) assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9) assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2) assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)
0
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """ closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) # print('@@this is the line to split##') closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
HumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: # Given list of numbers (of at least two elements), apply a linear transform to that list, # such that the smallest number will become 0 and the largest will become 1 # >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) # [0.0, 0.25, 0.5, 0.75, 1.0] min_number = min(numbers)
rescale_to_unit
max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([2.0, 49.9]) == [0.0, 1.0] assert candidate([100.0, 49.9]) == [1.0, 0.0] assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75] assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]
0
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """ min_number = min(numbers) # print('@@this is the line to split##') max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
HumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: # Filter given list of any python values only for integers # >>> filter_integers(['a', 3.14, 5]) #  # >>> filter_integers([1, 2, 3, 'abc', {}, []]) # [1, 2, 3]
filter_integers
return [x for x in values if isinstance(x, int)]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9] assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]
0
null
HumanEval/23
def strlen(string: str) -> int: # Return length of given string # >>> strlen('') # 0 # >>> strlen('abc') # 3
strlen
return len(string)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == 0 assert candidate('x') == 1 assert candidate('asdasnakj') == 9
0
null
HumanEval/24
def largest_divisor(n: int) -> int: # For a given number n, find the largest number that divides n evenly, smaller than n # >>> largest_divisor(15) # 5 for i in reversed(range(n)):
largest_divisor
if n % i == 0: return i
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3) == 1 assert candidate(7) == 1 assert candidate(10) == 5 assert candidate(100) == 50 assert candidate(49) == 7
0
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """ for i in reversed(range(n)): # print('@@this is the line to split##') if n % i == 0: return i
HumanEval/25
from typing import List def factorize(n: int) -> List[int]: # Return list of prime factors of given integer in the order from smallest to largest. # Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. # Input number should be equal to the product of all factors # >>> factorize(8) # [2, 2, 2] # >>> factorize(25) # [5, 5] # >>> factorize(70) # [2, 5, 7] import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i)
factorize
n //= i else: i += 1 if n > 1: fact.append(n) return fact
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) ==  assert candidate(4) == [2, 2] assert candidate(8) == [2, 2, 2] assert candidate(3 * 19) == [3, 19] assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19] assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19] assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19] assert candidate(3 * 2 * 3) == [2, 3, 3]
0
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """ import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) # print('@@this is the line to split##') n //= i else: i += 1 if n > 1: fact.append(n) return fact
HumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: # From a list of integers, remove all elements that occur more than once. # Keep order of elements left the same as in the input. # >>> remove_duplicates([1, 2, 3, 2, 4]) # [1, 3, 4] import collections
remove_duplicates
c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]
0
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """ import collections # print('@@this is the line to split##') c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
HumanEval/27
def flip_case(string: str) -> str: # For a given string, flip lowercase characters to uppercase and uppercase to lowercase. # >>> flip_case('Hello') # 'hELLO'
flip_case
return string.swapcase()
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('Hello!') == 'hELLO!' assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'
0
null
HumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: # Concatenate list of strings into a single string # >>> concatenate([]) # '' # >>> concatenate(['a', 'b', 'c']) # 'abc'
concatenate
return ''.join(strings)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == '' assert candidate(['x', 'y', 'z']) == 'xyz' assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'
0
null
HumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: # Filter an input list of strings only for ones that start with a given prefix. # >>> filter_by_prefix([], 'a') # [] # >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') # ['abc', 'array']
filter_by_prefix
return [x for x in strings if x.startswith(prefix)]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']
0
null
HumanEval/30
def get_positive(l: list): # Return only positive numbers in the list. # >>> get_positive([-1, 2, -4, 5, 6]) # [2, 5, 6] # >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) # [5, 3, 2, 3, 9, 123, 1]
get_positive
return [e for e in l if e > 0]
METADATA = {} def check(candidate): assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6] assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1] assert candidate([-1, -2]) == [] assert candidate([]) == []
0
null
HumanEval/31
def is_prime(n): # Return true if a given number is prime, and false otherwise. # >>> is_prime(6) # False # >>> is_prime(101) # True # >>> is_prime(11) # True # >>> is_prime(13441) # True # >>> is_prime(61) # True # >>> is_prime(4) # False # >>> is_prime(1) # False if n < 2: return False for k in range(2, n - 1):
is_prime
if n % k == 0: return False return True
METADATA = {} def check(candidate): assert candidate(6) == False assert candidate(101) == True assert candidate(11) == True assert candidate(13441) == True assert candidate(61) == True assert candidate(4) == False assert candidate(1) == False assert candidate(5) == True assert candidate(11) == True assert candidate(17) == True assert candidate(5 * 17) == False assert candidate(11 * 7) == False assert candidate(13441 * 19) == False
0
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """ if n < 2: return False for k in range(2, n - 1): # print('@@this is the line to split##') if n % k == 0: return False return True
HumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs + xs * x + xs * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): # xs are coefficients of a polynomial. # find_zero find x such that poly(x) = 0. # find_zero returns only only zero point, even if there are many. # Moreover, find_zero only takes list xs having even number of coefficients # and largest non zero coefficient as it guarantees # a solution. # >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x # -0.5 # >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 # 1.0 begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10:
find_zero
center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
METADATA = {} def check(candidate): import math import random rng = random.Random(42) import copy for _ in range(100): ncoeff = 2 * rng.randint(1, 4) coeffs = [] for _ in range(ncoeff): coeff = rng.randint(-10, 10) if coeff == 0: coeff = 1 coeffs.append(coeff) solution = candidate(copy.deepcopy(coeffs)) assert math.fabs(poly(coeffs, solution)) < 1e-4
0
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs + xs * x + xs * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """ begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: # print('@@this is the line to split##') center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
HumanEval/33
def sort_third(l: list): # This function takes a list l and returns a list l' such that # l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal # to the values of the corresponding indicies of l, but sorted. # >>> sort_third([1, 2, 3]) # [1, 2, 3] # >>> sort_third([5, 6, 3, 4, 8, 9, 2]) # [2, 6, 3, 4, 8, 9, 5] l = list(l)
sort_third
l[::3] = sorted(l[::3]) return l
METADATA = {} def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3])) assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]) assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]) assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]) assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])
0
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """ l = list(l) # print('@@this is the line to split##') l[::3] = sorted(l[::3]) return l
HumanEval/34
def unique(l: list): # Return sorted unique elements in a list # >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) # [0, 2, 3, 5, 9, 123]
unique
return sorted(list(set(l)))
METADATA = {} def check(candidate): assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
0
null
HumanEval/35
def max_element(l: list): # Return maximum element in the list. # >>> max_element([1, 2, 3]) # 3 # >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) # 123 m = l for e in l:
max_element
if e > m: m = e return m
METADATA = {} def check(candidate): assert candidate([1, 2, 3]) == 3 assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124
0
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """ m = l for e in l: # print('@@this is the line to split##') if e > m: m = e return m
HumanEval/36
def fizz_buzz(n: int): # Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. # >>> fizz_buzz(50) # 0 # >>> fizz_buzz(78) # 2 # >>> fizz_buzz(79) # 3 ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i)
fizz_buzz
s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
METADATA = {} def check(candidate): assert candidate(50) == 0 assert candidate(78) == 2 assert candidate(79) == 3 assert candidate(100) == 3 assert candidate(200) == 6 assert candidate(4000) == 192 assert candidate(10000) == 639 assert candidate(100000) == 8026
0
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """ ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) # print('@@this is the line to split##') s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
HumanEval/37
def sort_even(l: list): # This function takes a list l and returns a list l' such that # l' is identical to l in the odd indicies, while its values at the even indicies are equal # to the values of the even indicies of l, but sorted. # >>> sort_even([1, 2, 3]) # [1, 2, 3] # >>> sort_even([5, 6, 3, 4]) # [3, 6, 5, 4] evens = l[::2] odds = l[1::2] evens.sort() ans = []
sort_even
for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
METADATA = {} def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3]) assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])
0
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """ evens = l[::2] odds = l[1::2] evens.sort() ans = [] # print('@@this is the line to split##') for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
HumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): # takes as input string encoded with encode_cyclic function. Returns decoded string.
decode_cyclic
return encode_cyclic(encode_cyclic(s))
METADATA = {} def check(candidate): from random import randint, choice import string letters = string.ascii_lowercase for _ in range(100): str = ''.join(choice(letters) for i in range(randint(10, 20))) encoded_str = encode_cyclic(str) assert candidate(encoded_str) == str
0
null
HumanEval/39
def prime_fib(n: int): # prime_fib returns n-th number that is a Fibonacci number and it's also prime. # >>> prime_fib(1) # 2 # >>> prime_fib(2) # 3 # >>> prime_fib(3) # 5 # >>> prime_fib(4) # 13 # >>> prime_fib(5) # 89 import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False
prime_fib
return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
METADATA = {} def check(candidate): assert candidate(1) == 2 assert candidate(2) == 3 assert candidate(3) == 5 assert candidate(4) == 13 assert candidate(5) == 89 assert candidate(6) == 233 assert candidate(7) == 1597 assert candidate(8) == 28657 assert candidate(9) == 514229 assert candidate(10) == 433494437
0
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """ import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False # print('@@this is the line to split##') return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
HumanEval/40
def triples_sum_to_zero(l: list): # triples_sum_to_zero takes a list of integers as an input. # it returns True if there are three distinct elements in the list that # sum to zero, and False otherwise. # >>> triples_sum_to_zero([1, 3, 5, 0]) # False # >>> triples_sum_to_zero([1, 3, -2, 1]) # True # >>> triples_sum_to_zero([1, 2, 3, 7]) # False # >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) # True # >>> triples_sum_to_zero() # False for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)):
triples_sum_to_zero
if l[i] + l[j] + l[k] == 0: return True return False
METADATA = {} def check(candidate): assert candidate([1, 3, 5, 0]) == False assert candidate([1, 3, 5, -1]) == False assert candidate([1, 3, -2, 1]) == True assert candidate([1, 2, 3, 7]) == False assert candidate([1, 2, 5, 7]) == False assert candidate([2, 4, -5, 3, 9, 7]) == True assert candidate() == False assert candidate([1, 3, 5, -100]) == False assert candidate([100, 3, 5, -100]) == False
0
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero() False """ for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): # print('@@this is the line to split##') if l[i] + l[j] + l[k] == 0: return True return False
HumanEval/41
def car_race_collision(n: int): # Imagine a road that's a perfectly straight infinitely long line. # n cars are driving left to right; simultaneously, a different set of n cars # are driving right to left. The two sets of cars start out being very far from # each other. All cars move in the same speed. Two cars are said to collide # when a car that's moving left to right hits a car that's moving right to left. # However, the cars are infinitely sturdy and strong; as a result, they continue moving # in their trajectory as if they did not collide. # This function outputs the number of such collisions.
car_race_collision
return n**2
METADATA = {} def check(candidate): assert candidate(2) == 4 assert candidate(3) == 9 assert candidate(4) == 16 assert candidate(8) == 64 assert candidate(10) == 100
0
null
HumanEval/42
def incr_list(l: list): # Return list with elements incremented by 1. # >>> incr_list([1, 2, 3]) # [2, 3, 4] # >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) # [6, 4, 6, 3, 4, 4, 10, 1, 124]
incr_list
return [(e + 1) for e in l]
METADATA = {} def check(candidate): assert candidate([]) == [] assert candidate([3, 2, 1]) == [4, 3, 2] assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]
0
null
HumanEval/43
def pairs_sum_to_zero(l): # pairs_sum_to_zero takes a list of integers as an input. # it returns True if there are two distinct elements in the list that # sum to zero, and False otherwise. # >>> pairs_sum_to_zero([1, 3, 5, 0]) # False # >>> pairs_sum_to_zero([1, 3, -2, 1]) # False # >>> pairs_sum_to_zero([1, 2, 3, 7]) # False # >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) # True # >>> pairs_sum_to_zero() # False for i, l1 in enumerate(l): for j in range(i + 1, len(l)):
pairs_sum_to_zero
if l1 + l[j] == 0: return True return False
METADATA = {} def check(candidate): assert candidate([1, 3, 5, 0]) == False assert candidate([1, 3, -2, 1]) == False assert candidate([1, 2, 3, 7]) == False assert candidate([2, 4, -5, 3, 5, 7]) == True assert candidate() == False assert candidate([-3, 9, -1, 3, 2, 30]) == True assert candidate([-3, 9, -1, 3, 2, 31]) == True assert candidate([-3, 9, -1, 4, 2, 30]) == False assert candidate([-3, 9, -1, 4, 2, 31]) == False
0
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero() False """ for i, l1 in enumerate(l): for j in range(i + 1, len(l)): # print('@@this is the line to split##') if l1 + l[j] == 0: return True return False
HumanEval/44
def change_base(x: int, base: int): # Change numerical base of input number x to base. # return string representation after the conversion. # base numbers are less than 10. # >>> change_base(8, 3) # '22' # >>> change_base(8, 2) # '1000' # >>> change_base(7, 2) # '111' ret = "" while x > 0:
change_base
ret = str(x % base) + ret x //= base return ret
METADATA = {} def check(candidate): assert candidate(8, 3) == "22" assert candidate(9, 3) == "100" assert candidate(234, 2) == "11101010" assert candidate(16, 2) == "10000" assert candidate(8, 2) == "1000" assert candidate(7, 2) == "111" for x in range(2, 8): assert candidate(x, x + 1) == str(x)
0
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """ ret = "" while x > 0: # print('@@this is the line to split##') ret = str(x % base) + ret x //= base return ret
HumanEval/45
def triangle_area(a, h): # Given length of a side and high return area for a triangle. # >>> triangle_area(5, 3) # 7.5
triangle_area
return a * h / 2.0
METADATA = {} def check(candidate): assert candidate(5, 3) == 7.5 assert candidate(2, 2) == 2.0 assert candidate(10, 8) == 40.0
0
null
HumanEval/46
def fib4(n: int): # The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: # fib4(0) -> 0 # fib4(1) -> 0 # fib4(2) -> 2 # fib4(3) -> 0 # fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). # Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. # >>> fib4(5) # 4 # >>> fib4(6) # 8 # >>> fib4(7) # 14 results = [0, 0, 2, 0] if n < 4: return results[n]
fib4
for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
METADATA = {} def check(candidate): assert candidate(5) == 4 assert candidate(8) == 28 assert candidate(10) == 104 assert candidate(12) == 386
0
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """ results = [0, 0, 2, 0] if n < 4: return results[n] # print('@@this is the line to split##') for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
HumanEval/47
def median(l: list): # Return median of elements in the list l. # >>> median([3, 1, 2, 4, 5]) # 3 # >>> median([-10, 4, 6, 1000, 10, 20]) # 15.0 l = sorted(l) if len(l) % 2 == 1:
median
return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
METADATA = {} def check(candidate): assert candidate([3, 1, 2, 4, 5]) == 3 assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0 assert candidate() == 5 assert candidate([6, 5]) == 5.5 assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7
0
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """ l = sorted(l) if len(l) % 2 == 1: # print('@@this is the line to split##') return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
HumanEval/48
def is_palindrome(text: str): # Checks if given string is a palindrome # >>> is_palindrome('') # True # >>> is_palindrome('aba') # True # >>> is_palindrome('aaaaa') # True # >>> is_palindrome('zbcd') # False for i in range(len(text)): if text[i] != text[len(text) - 1 - i]:
is_palindrome
return False return True
METADATA = {} def check(candidate): assert candidate('') == True assert candidate('aba') == True assert candidate('aaaaa') == True assert candidate('zbcd') == False assert candidate('xywyx') == True assert candidate('xywyz') == False assert candidate('xywzx') == False
0
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """ for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: # print('@@this is the line to split##') return False return True
HumanEval/49
def modp(n: int, p: int): # Return 2^n modulo p (be aware of numerics). # >>> modp(3, 5) # 3 # >>> modp(1101, 101) # 2 # >>> modp(0, 101) # 1 # >>> modp(3, 11) # 8 # >>> modp(100, 101) # 1 ret = 1 for i in range(n):
modp
ret = (2 * ret) % p return ret
METADATA = {} def check(candidate): assert candidate(3, 5) == 3 assert candidate(1101, 101) == 2 assert candidate(0, 101) == 1 assert candidate(3, 11) == 8 assert candidate(100, 101) == 1 assert candidate(30, 5) == 4 assert candidate(31, 5) == 3
0
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """ ret = 1 for i in range(n): # print('@@this is the line to split##') ret = (2 * ret) % p return ret
HumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): # takes as input string encoded with encode_shift function. Returns decoded string.
decode_shift
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
METADATA = {} def check(candidate): from random import randint, choice import copy import string letters = string.ascii_lowercase for _ in range(100): str = ''.join(choice(letters) for i in range(randint(10, 20))) encoded_str = encode_shift(str) assert candidate(copy.deepcopy(encoded_str)) == str
0
null
HumanEval/51
def remove_vowels(text): # remove_vowels is a function that takes string and returns string without vowels. # >>> remove_vowels('') # '' # >>> remove_vowels("abcdef\nghijklm") # 'bcdf\nghjklm' # >>> remove_vowels('abcdef') # 'bcdf' # >>> remove_vowels('aaaaa') # '' # >>> remove_vowels('aaBAA') # 'B' # >>> remove_vowels('zbcd') # 'zbcd'
remove_vowels
return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
METADATA = {} def check(candidate): assert candidate('') == '' assert candidate("abcdef\nghijklm") == 'bcdf\nghjklm' assert candidate('fedcba') == 'fdcb' assert candidate('eeeee') == '' assert candidate('acBAA') == 'cB' assert candidate('EcBOO') == 'cB' assert candidate('ybcd') == 'ybcd'
0
null
HumanEval/52
def below_threshold(l: list, t: int): # Return True if all numbers in the list l are below threshold t. # >>> below_threshold([1, 2, 4, 10], 100) # True # >>> below_threshold([1, 20, 4, 10], 5) # False for e in l: if e >= t:
below_threshold
return False return True
METADATA = {} def check(candidate): assert candidate([1, 2, 4, 10], 100) assert not candidate([1, 20, 4, 10], 5) assert candidate([1, 20, 4, 10], 21) assert candidate([1, 20, 4, 10], 22) assert candidate([1, 8, 4, 10], 11) assert not candidate([1, 8, 4, 10], 10)
0
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """ for e in l: if e >= t: # print('@@this is the line to split##') return False return True
HumanEval/53
def add(x: int, y: int): # Add two numbers x and y # >>> add(2, 3) # 5 # >>> add(5, 7) # 12
return x + y
METADATA = {} def check(candidate): import random assert candidate(0, 1) == 1 assert candidate(1, 0) == 1 assert candidate(2, 3) == 5 assert candidate(5, 7) == 12 assert candidate(7, 5) == 12 for i in range(100): x, y = random.randint(0, 1000), random.randint(0, 1000) assert candidate(x, y) == x + y
0
null
HumanEval/54
def same_chars(s0: str, s1: str): # Check if two words have the same characters. # >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') # True # >>> same_chars('abcd', 'dddddddabc') # True # >>> same_chars('dddddddabc', 'abcd') # True # >>> same_chars('eabcd', 'dddddddabc') # False # >>> same_chars('abcd', 'dddddddabce') # False # >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') # False
same_chars
return set(s0) == set(s1)
METADATA = {} def check(candidate): assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True assert candidate('abcd', 'dddddddabc') == True assert candidate('dddddddabc', 'abcd') == True assert candidate('eabcd', 'dddddddabc') == False assert candidate('abcd', 'dddddddabcf') == False assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False assert candidate('aabb', 'aaccc') == False
0
null
HumanEval/55
def fib(n: int): # Return n-th Fibonacci number. # >>> fib(10) # 55 # >>> fib(1) # 1 # >>> fib(8) # 21 if n == 0: return 0
fib
if n == 1: return 1 return fib(n - 1) + fib(n - 2)
METADATA = {} def check(candidate): assert candidate(10) == 55 assert candidate(1) == 1 assert candidate(8) == 21 assert candidate(11) == 89 assert candidate(12) == 144
0
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """ if n == 0: return 0 # print('@@this is the line to split##') if n == 1: return 1 return fib(n - 1) + fib(n - 2)
HumanEval/56
def correct_bracketing(brackets: str): # brackets is a string of "<" and ">". # return True if every opening bracket has a corresponding closing bracket. # >>> correct_bracketing("<") # False # >>> correct_bracketing("<>") # True # >>> correct_bracketing("<<><>>") # True # >>> correct_bracketing("><<>") # False depth = 0 for b in brackets: if b == "<": depth += 1
correct_bracketing
else: depth -= 1 if depth < 0: return False return depth == 0
METADATA = {} def check(candidate): assert candidate("<>") assert candidate("<<><>>") assert candidate("<><><<><>><>") assert candidate("<><><<<><><>><>><<><><<>>>") assert not candidate("<<<><>>>>") assert not candidate("><<>") assert not candidate("<") assert not candidate("<<<<") assert not candidate(">") assert not candidate("<<>") assert not candidate("<><><<><>><>><<>") assert not candidate("<><><<><>><>>><>")
0
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """ depth = 0 for b in brackets: if b == "<": depth += 1 # print('@@this is the line to split##') else: depth -= 1 if depth < 0: return False return depth == 0
HumanEval/57
def monotonic(l: list): # Return True is list elements are monotonically increasing or decreasing. # >>> monotonic([1, 2, 4, 20]) # True # >>> monotonic([1, 20, 4, 10]) # False # >>> monotonic([4, 1, 0, -10]) # True if l == sorted(l) or l == sorted(l, reverse=True):
monotonic
return True return False
METADATA = {} def check(candidate): assert candidate([1, 2, 4, 10]) == True assert candidate([1, 2, 4, 20]) == True assert candidate([1, 20, 4, 10]) == False assert candidate([4, 1, 0, -10]) == True assert candidate([4, 1, 1, 0]) == True assert candidate([1, 2, 3, 2, 5, 60]) == False assert candidate([1, 2, 3, 4, 5, 60]) == True assert candidate([9, 9, 9, 9]) == True
0
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """ if l == sorted(l) or l == sorted(l, reverse=True): # print('@@this is the line to split##') return True return False
HumanEval/58
def common(l1: list, l2: list): # Return sorted unique common elements for two lists. # >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) # [1, 5, 653] # >>> common([5, 3, 2, 8], [3, 2]) # [2, 3] ret = set() for e1 in l1: for e2 in l2:
common
if e1 == e2: ret.add(e1) return sorted(list(ret))
METADATA = {} def check(candidate): assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653] assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3] assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4] assert candidate([4, 3, 2, 8], []) == []
0
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """ ret = set() for e1 in l1: for e2 in l2: # print('@@this is the line to split##') if e1 == e2: ret.add(e1) return sorted(list(ret))
HumanEval/59
def largest_prime_factor(n: int): # Return the largest prime factor of n. Assume n > 1 and is not a prime. # >>> largest_prime_factor(13195) # 29 # >>> largest_prime_factor(2048) # 2 def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False
largest_prime_factor
return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
METADATA = {} def check(candidate): assert candidate(15) == 5 assert candidate(27) == 3 assert candidate(63) == 7 assert candidate(330) == 11 assert candidate(13195) == 29
0
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """ def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False # print('@@this is the line to split##') return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
HumanEval/60
def sum_to_n(n: int): # sum_to_n is a function that sums numbers from 1 to n. # >>> sum_to_n(30) # 465 # >>> sum_to_n(100) # 5050 # >>> sum_to_n(5) # 15 # >>> sum_to_n(10) # 55 # >>> sum_to_n(1) # 1
sum_to_n
return sum(range(n + 1))
METADATA = {} def check(candidate): assert candidate(1) == 1 assert candidate(6) == 21 assert candidate(11) == 66 assert candidate(30) == 465 assert candidate(100) == 5050
0
null
HumanEval/61
def correct_bracketing(brackets: str): # brackets is a string of "(" and ")". # return True if every opening bracket has a corresponding closing bracket. # >>> correct_bracketing("(") # False # >>> correct_bracketing("()") # True # >>> correct_bracketing("(()())") # True # >>> correct_bracketing(")(()") # False depth = 0 for b in brackets: if b == "(": depth += 1
correct_bracketing
else: depth -= 1 if depth < 0: return False return depth == 0
METADATA = {} def check(candidate): assert candidate("()") assert candidate("(()())") assert candidate("()()(()())()") assert candidate("()()((()()())())(()()(()))") assert not candidate("((()())))") assert not candidate(")(()") assert not candidate("(") assert not candidate("((((") assert not candidate(")") assert not candidate("(()") assert not candidate("()()(()())())(()") assert not candidate("()()(()())()))()")
0
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """ depth = 0 for b in brackets: if b == "(": depth += 1 # print('@@this is the line to split##') else: depth -= 1 if depth < 0: return False return depth == 0
HumanEval/62
def derivative(xs: list): # xs represent coefficients of a polynomial. # xs + xs * x + xs * x^2 + .... # Return derivative of this polynomial in the same form. # >>> derivative([3, 1, 2, 4, 5]) # [1, 4, 12, 20] # >>> derivative([1, 2, 3]) # [2, 6]
derivative
return [(i * x) for i, x in enumerate(xs)][1:]
METADATA = {} def check(candidate): assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20] assert candidate([1, 2, 3]) == [2, 6] assert candidate([3, 2, 1]) == [2, 2] assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16] assert candidate() == []
0
null
HumanEval/63
def fibfib(n: int): # The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: # fibfib(0) == 0 # fibfib(1) == 0 # fibfib(2) == 1 # fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). # Please write a function to efficiently compute the n-th element of the fibfib number sequence. # >>> fibfib(1) # 0 # >>> fibfib(5) # 4 # >>> fibfib(8) # 24 if n == 0: return 0 if n == 1:
fibfib
return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
METADATA = {} def check(candidate): assert candidate(2) == 1 assert candidate(1) == 0 assert candidate(5) == 4 assert candidate(8) == 24 assert candidate(10) == 81 assert candidate(12) == 274 assert candidate(14) == 927
0
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """ if n == 0: return 0 if n == 1: # print('@@this is the line to split##') return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
HumanEval/64
FIX = """ Add more test cases. """ def vowels_count(s): # Write a function vowels_count which takes a string representing # a word as input and returns the number of vowels in the string. # Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a # vowel, but only when it is at the end of the given word. # Example: # >>> vowels_count("abcde") # 2 # >>> vowels_count("ACEDY") # 3 vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s)
vowels_count
if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
def check(candidate): # Check some simple cases assert candidate("abcde") == 2, "Test 1" assert candidate("Alone") == 3, "Test 2" assert candidate("key") == 2, "Test 3" assert candidate("bye") == 1, "Test 4" assert candidate("keY") == 2, "Test 5" assert candidate("bYe") == 1, "Test 6" assert candidate("ACEDY") == 3, "Test 7" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
FIX = """ Add more test cases. """ def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """ vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s) # print('@@this is the line to split##') if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
HumanEval/65
def circular_shift(x, shift): # Circular shift the digits of the integer x, shift the digits right by shift # and return the result as a string. # If shift > number of digits, return digits reversed. # >>> circular_shift(12, 1) # "21" # >>> circular_shift(12, 2) # "12" s = str(x) if shift > len(s):
circular_shift
return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
def check(candidate): # Check some simple cases assert candidate(100, 2) == "001" assert candidate(12, 2) == "12" assert candidate(97, 8) == "79" assert candidate(12, 1) == "21", "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(11, 101) == "11", "This prints if this assert fails 2 (also good for debugging!)"
0
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """ s = str(x) if shift > len(s): # print('@@this is the line to split##') return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
HumanEval/66
def digitSum(s): # Task # Write a function that takes a string as input and returns the sum of the upper characters only' # ASCII codes. # Examples: # digitSum("") => 0 # digitSum("abAB") => 131 # digitSum("abcCd") => 67 # digitSum("helloE") => 69 # digitSum("woArBld") => 131 # digitSum("aAaaaXa") => 153 if s == "": return 0
digitSum
return sum(ord(char) if char.isupper() else 0 for char in s)
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate("") == 0, "Error" assert candidate("abAB") == 131, "Error" assert candidate("abcCd") == 67, "Error" assert candidate("helloE") == 69, "Error" assert candidate("woArBld") == 131, "Error" assert candidate("aAaaaXa") == 153, "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(" How are yOu?") == 151, "Error" assert candidate("You arE Very Smart") == 327, "Error"
0
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """ if s == "": return 0 # print('@@this is the line to split##') return sum(ord(char) if char.isupper() else 0 for char in s)
HumanEval/67
def fruit_distribution(s,n): # In this task, you will be given a string that represents a number of apples and oranges # that are distributed in a basket of fruit this basket contains # apples, oranges, and mango fruits. Given the string that represents the total number of # the oranges and apples and an integer that represent the total number of the fruits # in the basket return the number of the mango fruits in the basket. # for examble: # fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 # fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 # fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 # fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 lis = list() for i in s.split(' '):
fruit_distribution
if i.isdigit(): lis.append(int(i)) return n - sum(lis)
def check(candidate): # Check some simple cases assert candidate("5 apples and 6 oranges",19) == 8 assert candidate("5 apples and 6 oranges",21) == 10 assert candidate("0 apples and 1 oranges",3) == 2 assert candidate("1 apples and 0 oranges",3) == 2 assert candidate("2 apples and 3 oranges",100) == 95 assert candidate("2 apples and 3 oranges",5) == 0 assert candidate("1 apples and 100 oranges",120) == 19
0
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """ lis = list() for i in s.split(' '): # print('@@this is the line to split##') if i.isdigit(): lis.append(int(i)) return n - sum(lis)
HumanEval/68
def pluck(arr): # "Given an array representing a branch of a tree that has non-negative integer nodes # your task is to pluck one of the nodes and return it. # The plucked node should be the node with the smallest even value. # If multiple nodes with the same smallest even value are found return the node that has smallest index. # The plucked node should be returned in a list, [ smalest_value, its index ], # If there are no even values or the given array is empty, return []. # Example 1: # Input: [4,2,3] # Output: [2, 1] # Explanation: 2 has the smallest even value, and 2 has the smallest index. # Example 2: # Input: [1,2,3] # Output: [2, 1] # Explanation: 2 has the smallest even value, and 2 has the smallest index. # Example 3: # Input: [] # Output: [] # # Example 4: # Input: [5, 0, 3, 0, 4, 2] # Output: [0, 1] # Explanation: 0 is the smallest value, but there are two zeros, # so we will choose the first zero, which has the smallest index. # Constraints: # * 1 <= nodes.length <= 10000 # * 0 <= node.value if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr))
pluck
if(evens == []): return [] return [min(evens), arr.index(min(evens))]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([4,2,3]) == [2, 1], "Error" assert candidate([1,2,3]) == [2, 1], "Error" assert candidate([]) == [], "Error" assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], "Error" assert candidate([5, 4, 8, 4 ,8]) == [4, 1], "Error" assert candidate([7, 6, 7, 1]) == [6, 1], "Error" assert candidate([7, 9, 7, 1]) == [], "Error"
0
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """ if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) # print('@@this is the line to split##') if(evens == []): return [] return [min(evens), arr.index(min(evens))]
HumanEval/69
def search(lst): # You are given a non-empty list of positive integers. Return the greatest integer that is greater than # zero, and has a frequency greater than or equal to the value of the integer itself. # The frequency of an integer is the number of times it appears in the list. # If no such a value exist, return -1. # Examples: # search([4, 1, 2, 2, 3, 1]) == 2 # search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 # search([5, 5, 4, 4, 4]) == -1 frq =  * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1
search
for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
def check(candidate): # manually generated tests assert candidate([5, 5, 5, 5, 1]) == 1 assert candidate([4, 1, 4, 1, 4, 4]) == 4 assert candidate([3, 3]) == -1 assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8 assert candidate([2, 3, 3, 2, 2]) == 2 # automatically generated tests assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1 assert candidate([3, 2, 8, 2]) == 2 assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1 assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1 assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1 assert candidate([1, 9, 10, 1, 3]) == 1 assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5 assert candidate() == 1 assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4 assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2 assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1 assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4 assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4 assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2 assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1 assert candidate() == -1 assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2 assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1 assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1 assert candidate([3, 10, 10, 9, 2]) == -1
0
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 ''' frq =  * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 # print('@@this is the line to split##') for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
HumanEval/70
def strange_sort_list(lst): # Given list of integers, return list in strange order. # Strange sorting, is when you start with the minimum value, # then maximum of the remaining integers, then minimum and so on. # Examples: # strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] # strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] # strange_sort_list([]) == [] res, switch = [], True while lst: res.append(min(lst) if switch else max(lst))
strange_sort_list
lst.remove(res[-1]) switch = not switch return res
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3] assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7] assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3] assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7] assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5] assert candidate([]) == [] assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5] assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2] assert candidate() ==  # Check some edge cases that are easy to work out by hand. assert True
0
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] ''' res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) # print('@@this is the line to split##') lst.remove(res[-1]) switch = not switch return res
HumanEval/71
def triangle_area(a, b, c): # Given the lengths of the three sides of a triangle. Return the area of # the triangle rounded to 2 decimal points if the three sides form a valid triangle. # Otherwise return -1 # Three sides make a valid triangle when the sum of any two sides is greater # than the third side. # Example: # triangle_area(3, 4, 5) == 6.00 # triangle_area(1, 2, 10) == -1 if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2
triangle_area
area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
def check(candidate): # Check some simple cases assert candidate(3, 4, 5) == 6.00, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1, 2, 10) == -1 assert candidate(4, 8, 5) == 8.18 assert candidate(2, 2, 2) == 1.73 assert candidate(1, 2, 3) == -1 assert candidate(10, 5, 7) == 16.25 assert candidate(2, 6, 3) == -1 # Check some edge cases that are easy to work out by hand. assert candidate(1, 1, 1) == 0.43, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(2, 2, 10) == -1
0
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 ''' if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 # print('@@this is the line to split##') area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
HumanEval/72
def will_it_fly(q,w): # Write a function that returns True if the object q will fly, and False otherwise. # The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. # Example: # will_it_fly([1, 2], 5) ➞ False # # 1+2 is less than the maximum possible weight, but it's unbalanced. # will_it_fly([3, 2, 3], 1) ➞ False # # it's balanced, but 3+2+3 is more than the maximum possible weight. # will_it_fly([3, 2, 3], 9) ➞ True # # 3+2+3 is less than the maximum possible weight, and it's balanced. # will_it_fly(, 5) ➞ True # # 3 is less than the maximum possible weight, and it's balanced. if sum(q) > w: return False i, j = 0, len(q)-1 while i<j:
will_it_fly
if q[i] != q[j]: return False i+=1 j-=1 return True
def check(candidate): # Check some simple cases assert candidate([3, 2, 3], 9) is True assert candidate([1, 2], 5) is False assert candidate(, 5) is True assert candidate([3, 2, 3], 1) is False # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3], 6) is False assert candidate(, 5) is True
0
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly(, 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: # print('@@this is the line to split##') if q[i] != q[j]: return False i+=1 j-=1 return True
HumanEval/73
def smallest_change(arr): # Given an array arr of integers, find the minimum number of elements that # need to be changed to make the array palindromic. A palindromic array is an array that # is read the same backwards and forwards. In one change, you can change one element to any other element. # For example: # smallest_change([1,2,3,5,4,7,9,6]) == 4 # smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 # smallest_change([1, 2, 3, 2, 1]) == 0 ans = 0 for i in range(len(arr) // 2):
smallest_change
if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
def check(candidate): # Check some simple cases assert candidate([1,2,3,5,4,7,9,6]) == 4 assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1 assert candidate([1, 4, 2]) == 1 assert candidate([1, 4, 4, 2]) == 1 # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3, 2, 1]) == 0 assert candidate([3, 1, 1, 3]) == 0 assert candidate() == 0 assert candidate([0, 1]) == 1
0
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """ ans = 0 for i in range(len(arr) // 2): # print('@@this is the line to split##') if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
HumanEval/74
def total_match(lst1, lst2): # Write a function that accepts two lists of strings and returns the list that has # total number of chars in the all strings of the list less than the other list. # if the two lists have the same number of chars, return the first list. # Examples # total_match([], []) ➞ [] # total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] # total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] # total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] # total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2:
total_match
l2 += len(st) if l1 <= l2: return lst1 else: return lst2
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([], []) == [] assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'] assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'] assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'] assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([], ['this']) == [] assert candidate(['this'], []) == []
0
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] ''' l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: # print('@@this is the line to split##') l2 += len(st) if l1 <= l2: return lst1 else: return lst2
HumanEval/75
def is_multiply_prime(a): # Write a function that returns true if the given number is the multiplication of 3 prime numbers # and false otherwise. # Knowing that (a) is less then 100. # Example: # is_multiply_prime(30) == True # 30 = 2 * 3 * 5 def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101):
is_multiply_prime
if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
def check(candidate): assert candidate(5) == False assert candidate(30) == True assert candidate(8) == True assert candidate(10) == False assert candidate(125) == True assert candidate(3 * 5 * 7) == True assert candidate(3 * 6 * 7) == False assert candidate(9 * 9 * 9) == False assert candidate(11 * 9 * 9) == False assert candidate(11 * 13 * 7) == True
0
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """ def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): # print('@@this is the line to split##') if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
HumanEval/76
def is_simple_power(x, n): # Your task is to write a function that returns true if a number x is a simple # power of n and false in other cases. # x is a simple power of n if n**int=x # For example: # is_simple_power(1, 4) => true # is_simple_power(2, 2) => true # is_simple_power(8, 2) => true # is_simple_power(3, 2) => false # is_simple_power(3, 1) => false # is_simple_power(5, 3) => false if (n == 1): return (x == 1) power = 1
is_simple_power
while (power < x): power = power * n return (power == x)
def check(candidate): # Check some simple cases assert candidate(16, 2)== True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(143214, 16)== False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(4, 2)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(9, 3)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(16, 4)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(24, 2)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(128, 4)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(12, 6)==False, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1, 1)==True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(1, 12)==True, "This prints if this assert fails 2 (also good for debugging!)"
0
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """ if (n == 1): return (x == 1) power = 1 # print('@@this is the line to split##') while (power < x): power = power * n return (power == x)
HumanEval/77
def iscube(a): # Write a function that takes an integer a and returns True # if this ingeger is a cube of some integer number. # Note: you may assume the input is always valid. # Examples: # iscube(1) ==> True # iscube(2) ==> False # iscube(-1) ==> True # iscube(64) ==> True # iscube(0) ==> True # iscube(180) ==> False a = abs(a)
iscube
return int(round(a ** (1. / 3))) ** 3 == a
def check(candidate): # Check some simple cases assert candidate(1) == True, "First test error: " + str(candidate(1)) assert candidate(2) == False, "Second test error: " + str(candidate(2)) assert candidate(-1) == True, "Third test error: " + str(candidate(-1)) assert candidate(64) == True, "Fourth test error: " + str(candidate(64)) assert candidate(180) == False, "Fifth test error: " + str(candidate(180)) assert candidate(1000) == True, "Sixth test error: " + str(candidate(1000)) # Check some edge cases that are easy to work out by hand. assert candidate(0) == True, "1st edge test error: " + str(candidate(0)) assert candidate(1729) == False, "2nd edge test error: " + str(candidate(1728))
0
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' a = abs(a) # print('@@this is the line to split##') return int(round(a ** (1. / 3))) ** 3 == a
HumanEval/78
def hex_key(num): # You have been tasked to write a function that receives # a hexadecimal number as a string and counts the number of hexadecimal # digits that are primes (prime number, or a prime, is a natural number # greater than 1 that is not a product of two smaller natural numbers). # Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. # Prime numbers are 2, 3, 5, 7, 11, 13, 17,... # So you have to determine a number of the following digits: 2, 3, 5, 7, # B (=decimal 11), D (=decimal 13). # Note: you may assume the input is always correct or empty string, # and symbols A,B,C,D,E,F are always uppercase. # Examples: # For num = "AB" the output should be 1. # For num = "1077E" the output should be 2. # For num = "ABED1A33" the output should be 4. # For num = "123456789ABCDEF0" the output should be 6. # For num = "2020" the output should be 2. primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)):
hex_key
def check(candidate): # Check some simple cases assert candidate("AB") == 1, "First test error: " + str(candidate("AB")) assert candidate("1077E") == 2, "Second test error: " + str(candidate("1077E")) assert candidate("ABED1A33") == 4, "Third test error: " + str(candidate("ABED1A33")) assert candidate("2020") == 2, "Fourth test error: " + str(candidate("2020")) assert candidate("123456789ABCDEF0") == 6, "Fifth test error: " + str(candidate("123456789ABCDEF0")) assert candidate("112233445566778899AABBCCDDEEFF00") == 12, "Sixth test error: " + str(candidate("112233445566778899AABBCCDDEEFF00")) # Check some edge cases that are easy to work out by hand. assert candidate([]) == 0
0
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """ primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): # print('@@this is the line to split##') if num[i] in primes: total += 1 return total
HumanEval/79
def decimal_to_binary(decimal): # You will be given a number in decimal form and your task is to convert it to # binary format. The function should return a string, with each character representing a binary # number. Each character in the string will be '0' or '1'. # There will be an extra couple of characters 'db' at the beginning and at the end of the string. # The extra characters are there to help with the format. # Examples: # decimal_to_binary(15) # returns "db1111db" # decimal_to_binary(32) # returns "db100000db"
decimal_to_binary
return "db" + bin(decimal)[2:] + "db"
def check(candidate): # Check some simple cases assert candidate(0) == "db0db" assert candidate(32) == "db100000db" assert candidate(103) == "db1100111db" assert candidate(15) == "db1111db", "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
null
HumanEval/80
def is_happy(s): # You are given a string s. # Your task is to check if the string is happy or not. # A string is happy if its length is at least 3 and every 3 consecutive letters are distinct # For example: # is_happy(a) => False # is_happy(aa) => False # is_happy(abcd) => True # is_happy(aabb) => False # is_happy(adb) => True # is_happy(xyy) => False if len(s) < 3: return False for i in range(len(s) - 2):
is_happy
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
def check(candidate): # Check some simple cases assert candidate("a") == False , "a" assert candidate("aa") == False , "aa" assert candidate("abcd") == True , "abcd" assert candidate("aabb") == False , "aabb" assert candidate("adb") == True , "adb" assert candidate("xyy") == False , "xyy" assert candidate("iopaxpoi") == True , "iopaxpoi" assert candidate("iopaxioi") == False , "iopaxioi"
0
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """ if len(s) < 3: return False for i in range(len(s) - 2): # print('@@this is the line to split##') if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
HumanEval/81
def check(candidate): # Check some simple cases assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'] assert candidate([1.2]) == ['D+'] assert candidate([0.5]) == ['D-'] assert candidate([0.0]) == ['E'] assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'] assert candidate([0, 0.7]) == ['E', 'D-'] # Check some edge cases that are easy to work out by hand. assert True
0
HumanEval/82
def prime_length(string): # Write a function that takes a string and returns True if the string # length is a prime number or False otherwise # Examples # prime_length('Hello') == True # prime_length('abcdcba') == True # prime_length('kittens') == True # prime_length('orange') == False l = len(string) if l == 0 or l == 1: return False
prime_length
for i in range(2, l): if l % i == 0: return False return True
def check(candidate): # Check some simple cases assert candidate('Hello') == True assert candidate('abcdcba') == True assert candidate('kittens') == True assert candidate('orange') == False assert candidate('wow') == True assert candidate('world') == True assert candidate('MadaM') == True assert candidate('Wow') == True assert candidate('') == False assert candidate('HI') == True assert candidate('go') == True assert candidate('gogo') == False assert candidate('aaaaaaaaaaaaaaa') == False # Check some edge cases that are easy to work out by hand. assert candidate('Madam') == True assert candidate('M') == False assert candidate('0') == False
0
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """ l = len(string) if l == 0 or l == 1: return False # print('@@this is the line to split##') for i in range(2, l): if l % i == 0: return False return True
HumanEval/83
def starts_one_ends(n): # Given a positive integer n, return the count of the numbers of n-digit # positive integers that start or end with 1. if n == 1: return 1
starts_one_ends
return 18 * (10 ** (n - 2))
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1) == 1 assert candidate(2) == 18 assert candidate(3) == 180 assert candidate(4) == 1800 assert candidate(5) == 18000 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ if n == 1: return 1 # print('@@this is the line to split##') return 18 * (10 ** (n - 2))
HumanEval/84
def solve(N): # Given a positive integer N, return the total sum of its digits in binary. # # Example # For N = 1000, the sum of digits will be 1 the output should be "1". # For N = 150, the sum of digits will be 6 the output should be "110". # For N = 147, the sum of digits will be 12 the output should be "1100". # # Variables: # @N integer # Constraints: 0 ≤ N ≤ 10000. # Output: # a string of binary number
solve
return bin(sum(int(i) for i in str(N)))[2:]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1000) == "1", "Error" assert candidate(150) == "110", "Error" assert candidate(147) == "1100", "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(333) == "1001", "Error" assert candidate(963) == "10010", "Error"
0
null
HumanEval/85
def add(lst): # Given a non-empty list of integers lst. add the even elements that are at odd indices.. # Examples: # add([4, 2, 6, 7]) ==> 2
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
def check(candidate): # Check some simple cases assert candidate([4, 88]) == 88 assert candidate([4, 5, 6, 7, 2, 122]) == 122 assert candidate([4, 0, 6, 7]) == 0 assert candidate([4, 4, 6, 8]) == 12 # Check some edge cases that are easy to work out by hand.
0
null
HumanEval/86
def anti_shuffle(s): # Write a function that takes a string and returns an ordered version of it. # Ordered version of string, is a string where all words (separated by space) # are replaced by a new word where all the characters arranged in # ascending order based on ascii value. # Note: You should keep the order of words and blank spaces in the sentence. # For example: # anti_shuffle('Hi') returns 'Hi' # anti_shuffle('hello') returns 'ehllo' # anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor'
anti_shuffle
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
def check(candidate): # Check some simple cases assert candidate('Hi') == 'Hi' assert candidate('hello') == 'ehllo' assert candidate('number') == 'bemnru' assert candidate('abcd') == 'abcd' assert candidate('Hello World!!!') == 'Hello !!!Wdlor' assert candidate('') == '' assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy' # Check some edge cases that are easy to work out by hand. assert True
0
null
HumanEval/87
def get_row(lst, x): # You are given a 2 dimensional data, as a nested lists, # which is similar to matrix, however, unlike matrices, # each row may contain a different number of columns. # Given lst, and integer x, find integers x in the list, # and return list of tuples, [(x1, y1), (x2, y2) ...] such that # each tuple is a coordinate - (row, columns), starting with 0. # Sort coordinates initially by rows in ascending order. # Also, sort coordinates of the row by columns in descending order. # # Examples: # get_row([ # [1,2,3,4,5,6], # [1,2,3,4,1,6], # [1,2,3,4,5,1] # ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] # get_row([], 1) == [] # get_row([[], , [1, 2, 3]], 3) == [(2, 2)] coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
get_row
return sorted(sorted(coords, key=lambda x: x, reverse=True), key=lambda x: x)
def check(candidate): # Check some simple cases assert candidate([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6] ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,1,3,4,5,6], [1,2,1,4,5,6], [1,2,3,1,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)] assert candidate([], 1) == [] assert candidate([], 2) == [] assert candidate([[], , [1, 2, 3]], 3) == [(2, 2)] # Check some edge cases that are easy to work out by hand. assert True
0
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], , [1, 2, 3]], 3) == [(2, 2)] """ coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] # print('@@this is the line to split##') return sorted(sorted(coords, key=lambda x: x, reverse=True), key=lambda x: x)
HumanEval/88
def sort_array(array): # Given an array of non-negative integers, return a copy of the given array after sorting, # you will sort the given array in ascending order if the sum( first index value, last index value) is odd, # or sort it in descending order if the sum( first index value, last index value) is even. # Note: # * don't change the given array. # Examples: # * sort_array([]) => [] # * sort_array() =>  # * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] # * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0]
sort_array
return [] if len(array) == 0 else sorted(array, reverse= (array+array[-1]) % 2 == 0)
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([]) == [], "Error" assert candidate() == , "Error" assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], "Error" assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([2, 1]) == [1, 2], "Error" assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], "Error" assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], "Error"
0
null
HumanEval/89
def encrypt(s): # Create a function encrypt that takes a string as an argument and # returns a string encrypted with the alphabet being rotated. # The alphabet should be rotated in a manner such that the letters # shift down by two multiplied to two places. # For example: # encrypt('hi') returns 'lm' # encrypt('asdfghjkl') returns 'ewhjklnop' # encrypt('gf') returns 'kj' # encrypt('et') returns 'ix' d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d:
encrypt
out += d[(d.index(c)+2*2) % 26] else: out += c return out
def check(candidate): # Check some simple cases assert candidate('hi') == 'lm', "This prints if this assert fails 1 (good for debugging!)" assert candidate('asdfghjkl') == 'ewhjklnop', "This prints if this assert fails 1 (good for debugging!)" assert candidate('gf') == 'kj', "This prints if this assert fails 1 (good for debugging!)" assert candidate('et') == 'ix', "This prints if this assert fails 1 (good for debugging!)" assert candidate('faewfawefaewg')=='jeiajeaijeiak', "This prints if this assert fails 1 (good for debugging!)" assert candidate('hellomyfriend')=='lippsqcjvmirh', "This prints if this assert fails 2 (good for debugging!)" assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('a')=='e', "This prints if this assert fails 2 (also good for debugging!)"
0
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """ d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: # print('@@this is the line to split##') out += d[(d.index(c)+2*2) % 26] else: out += c return out
HumanEval/90
def next_smallest(lst): # You are given a list of integers. # Write a function next_smallest() that returns the 2nd smallest element of the list. # Return None if there is no such element. # # next_smallest([1, 2, 3, 4, 5]) == 2 # next_smallest([5, 1, 4, 3, 2]) == 2 # next_smallest([]) == None # next_smallest([1, 1]) == None lst = sorted(set(lst))
next_smallest
return None if len(lst) < 2 else lst
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4, 5]) == 2 assert candidate([5, 1, 4, 3, 2]) == 2 assert candidate([]) == None assert candidate([1, 1]) == None assert candidate([1,1,1,1,0]) == 1 assert candidate([1, 0**0]) == None assert candidate([-35, 34, 12, -45]) == -35 # Check some edge cases that are easy to work out by hand. assert True
0
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """ lst = sorted(set(lst)) # print('@@this is the line to split##') return None if len(lst) < 2 else lst
HumanEval/91
def is_bored(S): # You'll be given a string of words, and your task is to count the number # of boredoms. A boredom is a sentence that starts with the word "I". # Sentences are delimited by '.', '?' or '!'. # For example: # >>> is_bored("Hello world") # 0 # >>> is_bored("The sky is blue. The sun is shining. I love this weather") # 1 import re
is_bored
sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
def check(candidate): # Check some simple cases assert candidate("Hello world") == 0, "Test 1" assert candidate("Is the sky blue?") == 0, "Test 2" assert candidate("I love It !") == 1, "Test 3" assert candidate("bIt") == 0, "Test 4" assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5" assert candidate("You and I are going for a walk") == 0, "Test 6" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """ import re # print('@@this is the line to split##') sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
HumanEval/92
def any_int(x, y, z): # Create a function that takes 3 numbers. # Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. # Returns false in any other cases. # # Examples # any_int(5, 2, 7) ➞ True # # any_int(3, 2, 2) ➞ False # any_int(3, -2, 1) ➞ True # # any_int(3.6, -2.2, 2) ➞ False # if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x):
any_int
return True return False return False
def check(candidate): # Check some simple cases assert candidate(2, 3, 1)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(2.5, 2, 3)==False, "This prints if this assert fails 2 (good for debugging!)" assert candidate(1.5, 5, 3.5)==False, "This prints if this assert fails 3 (good for debugging!)" assert candidate(2, 6, 2)==False, "This prints if this assert fails 4 (good for debugging!)" assert candidate(4, 2, 2)==True, "This prints if this assert fails 5 (good for debugging!)" assert candidate(2.2, 2.2, 2.2)==False, "This prints if this assert fails 6 (good for debugging!)" assert candidate(-4, 6, 2)==True, "This prints if this assert fails 7 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(2,1,1)==True, "This prints if this assert fails 8 (also good for debugging!)" assert candidate(3,4,7)==True, "This prints if this assert fails 9 (also good for debugging!)" assert candidate(3.0,4,7)==False, "This prints if this assert fails 10 (also good for debugging!)"
0
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): # print('@@this is the line to split##') return True return False return False
HumanEval/93
def encode(message): # Write a function that takes a message, and encodes in such a # way that it swaps case of all letters, replaces all vowels in # the message with the letter that appears 2 places ahead of that # vowel in the english alphabet. # Assume only letters. # # Examples: # >>> encode('test') # 'TGST' # >>> encode('This is a message') # 'tHKS KS C MGSSCGG' vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
encode
message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
def check(candidate): # Check some simple cases assert candidate('TEST') == 'tgst', "This prints if this assert fails 1 (good for debugging!)" assert candidate('Mudasir') == 'mWDCSKR', "This prints if this assert fails 2 (good for debugging!)" assert candidate('YES') == 'ygs', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('This is a message') == 'tHKS KS C MGSSCGG', "This prints if this assert fails 2 (also good for debugging!)" assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg', "This prints if this assert fails 2 (also good for debugging!)"
0
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """ vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) # print('@@this is the line to split##') message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
HumanEval/94
def skjkasdkd(lst): # You are given a list of integers. # You need to find the largest prime value and return the sum of its digits. # Examples: # For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 # For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 # For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 # For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 # For lst = [0,81,12,3,1,21] the output should be 3 # For lst = [0,8,1,2,1,7] the output should be 7 def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0
skjkasdkd
i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
def check(candidate): # Check some simple cases assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, "This prints if this assert fails 2 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, "This prints if this assert fails 3 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, "This prints if this assert fails 4 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,81,12,3,1,21]) == 3, "This prints if this assert fails 5 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,8,1,2,1,7]) == 7, "This prints if this assert fails 6 (also good for debugging!)" assert candidate() == 19, "This prints if this assert fails 7 (also good for debugging!)" assert candidate([8191, 123456, 127, 7]) == 19, "This prints if this assert fails 8 (also good for debugging!)" assert candidate([127, 97, 8192]) == 10, "This prints if this assert fails 9 (also good for debugging!)"
0
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 # print('@@this is the line to split##') i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
HumanEval/95
def check_dict_case(dict): # Given a dictionary, return True if all keys are strings in lower # case or all keys are strings in upper case, else return False. # The function should return False is the given dictionary is empty. # Examples: # check_dict_case({"a":"apple", "b":"banana"}) should return True. # check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. # check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. # check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. # check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper():
check_dict_case
state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
def check(candidate): # Check some simple cases assert candidate({"p":"pineapple", "b":"banana"}) == True, "First test error: " + str(candidate({"p":"pineapple", "b":"banana"})) assert candidate({"p":"pineapple", "A":"banana", "B":"banana"}) == False, "Second test error: " + str(candidate({"p":"pineapple", "A":"banana", "B":"banana"})) assert candidate({"p":"pineapple", 5:"banana", "a":"apple"}) == False, "Third test error: " + str(candidate({"p":"pineapple", 5:"banana", "a":"apple"})) assert candidate({"Name":"John", "Age":"36", "City":"Houston"}) == False, "Fourth test error: " + str(candidate({"Name":"John", "Age":"36", "City":"Houston"})) assert candidate({"STATE":"NC", "ZIP":"12345" }) == True, "Fifth test error: " + str(candidate({"STATE":"NC", "ZIP":"12345" })) assert candidate({"fruit":"Orange", "taste":"Sweet" }) == True, "Fourth test error: " + str(candidate({"fruit":"Orange", "taste":"Sweet" })) # Check some edge cases that are easy to work out by hand. assert candidate({}) == False, "1st edge test error: " + str(candidate({}))
0
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """ if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): # print('@@this is the line to split##') state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
HumanEval/96
def count_up_to(n): # Implement a function that takes an non-negative integer and returns an array of the first n # integers that are prime numbers and less than n. # for example: # count_up_to(5) => [2,3] # count_up_to(11) => [2,3,5,7] # count_up_to(0) => [] # count_up_to(20) => [2,3,5,7,11,13,17,19] # count_up_to(1) => [] # count_up_to(18) => [2,3,5,7,11,13,17] primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0:
count_up_to
is_prime = False break if is_prime: primes.append(i) return primes
def check(candidate): assert candidate(5) == [2,3] assert candidate(6) == [2,3,5] assert candidate(7) == [2,3,5] assert candidate(10) == [2,3,5,7] assert candidate(0) == [] assert candidate(22) == [2,3,5,7,11,13,17,19] assert candidate(1) == [] assert candidate(18) == [2,3,5,7,11,13,17] assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43] assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
0
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """ primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: # print('@@this is the line to split##') is_prime = False break if is_prime: primes.append(i) return primes
HumanEval/97
def multiply(a, b): # Complete the function that takes two integers and returns # the product of their unit digits. # Assume the input is always valid. # Examples: # multiply(148, 412) should return 16. # multiply(19, 28) should return 72. # multiply(2020, 1851) should return 0. # multiply(14,-15) should return 20.
multiply
return abs(a % 10) * abs(b % 10)
def check(candidate): # Check some simple cases assert candidate(148, 412) == 16, "First test error: " + str(candidate(148, 412)) assert candidate(19, 28) == 72, "Second test error: " + str(candidate(19, 28)) assert candidate(2020, 1851) == 0, "Third test error: " + str(candidate(2020, 1851)) assert candidate(14,-15) == 20, "Fourth test error: " + str(candidate(14,-15)) assert candidate(76, 67) == 42, "Fifth test error: " + str(candidate(76, 67)) assert candidate(17, 27) == 49, "Sixth test error: " + str(candidate(17, 27)) # Check some edge cases that are easy to work out by hand. assert candidate(0, 1) == 0, "1st edge test error: " + str(candidate(0, 1)) assert candidate(0, 0) == 0, "2nd edge test error: " + str(candidate(0, 0))
0
null
HumanEval/98
def count_upper(s): # Given a string s, count the number of uppercase vowels in even indices. # # For example: # count_upper('aBCdEf') returns 1 # count_upper('abcdefg') returns 0 # count_upper('dBBE') returns 0 count = 0 for i in range(0,len(s),2):
count_upper
if s[i] in "AEIOU": count += 1 return count
def check(candidate): # Check some simple cases assert candidate('aBCdEf') == 1 assert candidate('abcdefg') == 0 assert candidate('dBBE') == 0 assert candidate('B') == 0 assert candidate('U') == 1 assert candidate('') == 0 assert candidate('EEEE') == 2 # Check some edge cases that are easy to work out by hand. assert True
0
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """ count = 0 for i in range(0,len(s),2): # print('@@this is the line to split##') if s[i] in "AEIOU": count += 1 return count
HumanEval/99
def closest_integer(value): # Create a function that takes a value (string) representing a number # and returns the closest integer to it. If the number is equidistant # from two integers, round it away from zero. # Examples # >>> closest_integer("10") # 10 # >>> closest_integer("15.3") # 15 # Note: # Rounding away from zero means that if the given number is equidistant # from two integers, the one you should return is the one that is the # farthest from zero. For example closest_integer("14.5") should # return 15 and closest_integer("-14.5") should return -15. from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0:
closest_integer
res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
def check(candidate): # Check some simple cases assert candidate("10") == 10, "Test 1" assert candidate("14.5") == 15, "Test 2" assert candidate("-15.5") == -16, "Test 3" assert candidate("15.3") == 15, "Test 3" # Check some edge cases that are easy to work out by hand. assert candidate("0") == 0, "Test 0"
0
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. ''' from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: # print('@@this is the line to split##') res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res

# Dataset Card for Dataset Name

### Dataset Summary

The Recode benchmark proposes to apply code and natural language transformations to code-generation benchmarks to evaluate the robustness of code-generation models. This dataset contains the perturbed version of HumanEval that they released. It was automatically generated from the HumanEval dataset.

### Subsets

There are four transformation categories that form the subsets of this dataset: func_name, nlaugmenter, natgen and format.

### Languages

The programming problems are written in Python and contains docstrings and comments in English.

## Dataset Structure

### Data Fields

• task_id: ID of the original HumanEval example
• prompt: the perturbed prompt
• entry_point: entry point for test
• canonical_solution: solution for the problem in the prompt
• test: contains function to test generated code for correctness
• seed: seed of the perturbed prompt
• perturbation_name: name of the perturbation
• partial: partial solution to the problem. This field is only present for transformation categories that affect a partial solution: natgen and format.

### Data Splits

The dataset only has a test split.

## Considerations for Using the Data

### Citation Information

@article{wang2022recode,
title={ReCode: Robustness Evaluation of Code Generation Models},
author={Wang, Shiqi and Li, Zheng and Qian, Haifeng and Yang, Chenghao and Wang, Zijian and Shang, Mingyue and Kumar, Varun and Tan, Samson and Ray, Baishakhi and Bhatia, Parminder and others},
journal={arXiv preprint arXiv:2212.10264},
year={2022}
}