task_id
stringlengths
11
13
prompt
stringlengths
97
1.72k
entry_point
stringlengths
1
30
canonical_solution
stringlengths
16
483
test
stringlengths
117
1.8k
seed
int32
0
9
perturbation_name
stringclasses
6 values
partial
stringlengths
265
2.05k
HumanEval/104
def unique_digits(x): """Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """ odd_digit_elements = [] for i in x:
unique_digits
if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
def check(candidate): # Check some simple cases assert candidate([15, 33, 1422, 1]) == [1, 15, 33] assert candidate([152, 323, 1422, 10]) == [] assert candidate([12345, 2033, 111, 151]) == [111, 151] assert candidate([135, 103, 31]) == [31, 135] # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def unique_digits(x): """Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """ odd_digit_elements = [] for i in x: # print('@@this is the line to split##') if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
HumanEval/105
def by_length(arr): """ Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """ dic = { 1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 6: "Six", 7: "Seven", 8: "Eight",
by_length
9: "Nine", } sorted_arr = sorted(arr, reverse=True) new_arr = [] for var in sorted_arr: try: new_arr.append(dic[var]) except: pass return new_arr
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"], "Error" assert candidate([]) == [], "Error" assert candidate([1, -1 , 55]) == ['One'], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([1, -1, 3, 2]) == ["Three", "Two", "One"] assert candidate([9, 4, 8]) == ["Nine", "Eight", "Four"]
0
tab_indent
def by_length(arr): """ Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """ dic = { 1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 6: "Six", 7: "Seven", 8: "Eight", # print('@@this is the line to split##') 9: "Nine", } sorted_arr = sorted(arr, reverse=True) new_arr = [] for var in sorted_arr: try: new_arr.append(dic[var]) except: pass return new_arr
HumanEval/106
def f(n): """ Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """ ret = [] for i in range(1,n+1): if i%2 == 0: x = 1 for j in range(1,i+1): x *= j
f
ret += [x] else: x = 0 for j in range(1,i+1): x += j ret += [x] return ret
def check(candidate): assert candidate(5) == [1, 2, 6, 24, 15] assert candidate(7) == [1, 2, 6, 24, 15, 720, 28] assert candidate(1) == [1] assert candidate(3) == [1, 2, 6]
0
tab_indent
def f(n): """ Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """ ret = [] for i in range(1,n+1): if i%2 == 0: x = 1 for j in range(1,i+1): x *= j # print('@@this is the line to split##') ret += [x] else: x = 0 for j in range(1,i+1): x += j ret += [x] return ret
HumanEval/107
def even_odd_palindrome(n): """ Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """ def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0
even_odd_palindrome
for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
def check(candidate): # Check some simple cases assert candidate(123) == (8, 13) assert candidate(12) == (4, 6) assert candidate(3) == (1, 2) assert candidate(63) == (6, 8) assert candidate(25) == (5, 6) assert candidate(19) == (4, 6) assert candidate(9) == (4, 5), "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1) == (0, 1), "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def even_odd_palindrome(n): """ Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """ def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 # print('@@this is the line to split##') for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
HumanEval/108
def count_nums(arr): """ Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1
count_nums
n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
def check(candidate): # Check some simple cases assert candidate([]) == 0 assert candidate([-1, -2, 0]) == 0 assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6 assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5 assert candidate([1, 100, 98, -7, 1, -1]) == 4 assert candidate([12, 23, 34, -45, -56, 0]) == 5 assert candidate([-0, 1**0]) == 1 assert candidate([1]) == 1 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def count_nums(arr): """ Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 # print('@@this is the line to split##') n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
HumanEval/109
def move_one_ball(arr): """We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """ if len(arr)==0: return True sorted_array=sorted(arr) my_arr=[] min_value=min(arr)
move_one_ball
min_index=arr.index(min_value) my_arr=arr[min_index:]+arr[0:min_index] for i in range(len(arr)): if my_arr[i]!=sorted_array[i]: return False return True
def check(candidate): # Check some simple cases assert candidate([3, 4, 5, 1, 2])==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([3, 5, 10, 1, 2])==True assert candidate([4, 3, 1, 2])==False # Check some edge cases that are easy to work out by hand. assert candidate([3, 5, 4, 1, 2])==False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([])==True
0
tab_indent
def move_one_ball(arr): """We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """ if len(arr)==0: return True sorted_array=sorted(arr) my_arr=[] min_value=min(arr) # print('@@this is the line to split##') min_index=arr.index(min_value) my_arr=arr[min_index:]+arr[0:min_index] for i in range(len(arr)): if my_arr[i]!=sorted_array[i]: return False return True
HumanEval/110
def exchange(lst1, lst2): """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO" It is assumed that the input lists will be non-empty. """ odd = 0 even = 0 for i in lst1: if i%2 == 1: odd += 1 for i in lst2:
exchange
if i%2 == 0: even += 1 if even >= odd: return "YES" return "NO"
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == "YES" assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == "NO" assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == "YES" assert candidate([5, 7, 3], [2, 6, 4]) == "YES" assert candidate([5, 7, 3], [2, 6, 3]) == "NO" assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == "NO" # Check some edge cases that are easy to work out by hand. assert candidate([100, 200], [200, 200]) == "YES"
0
tab_indent
def exchange(lst1, lst2): """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO" It is assumed that the input lists will be non-empty. """ odd = 0 even = 0 for i in lst1: if i%2 == 1: odd += 1 for i in lst2: # print('@@this is the line to split##') if i%2 == 0: even += 1 if even >= odd: return "YES" return "NO"
HumanEval/111
def histogram(test): """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """ dict1={} list1=test.split(" ") t=0 for i in list1: if(list1.count(i)>t) and i!='':
histogram
t=list1.count(i) if t>0: for i in list1: if(list1.count(i)==t): dict1[i]=t return dict1
def check(candidate): # Check some simple cases assert candidate('a b b a') == {'a':2,'b': 2}, "This prints if this assert fails 1 (good for debugging!)" assert candidate('a b c a b') == {'a': 2, 'b': 2}, "This prints if this assert fails 2 (good for debugging!)" assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, "This prints if this assert fails 3 (good for debugging!)" assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 4 (good for debugging!)" assert candidate('b b b b a') == {'b': 4}, "This prints if this assert fails 5 (good for debugging!)" assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 6 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('') == {}, "This prints if this assert fails 7 (also good for debugging!)" assert candidate('a') == {'a': 1}, "This prints if this assert fails 8 (also good for debugging!)"
0
tab_indent
def histogram(test): """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """ dict1={} list1=test.split(" ") t=0 for i in list1: if(list1.count(i)>t) and i!='': # print('@@this is the line to split##') t=list1.count(i) if t>0: for i in list1: if(list1.count(i)==t): dict1[i]=t return dict1
HumanEval/112
def reverse_delete(s,c): """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = "abcde", c = "ae", the result should be ('bcd',False) For s = "abcdef", c = "b" the result should be ('acdef',False) For s = "abcdedcba", c = "ab", the result should be ('cdedc',True) """ s = ''.join([char for char in s if char not in c])
reverse_delete
return (s,s[::-1] == s)
def check(candidate): assert candidate("abcde","ae") == ('bcd',False) assert candidate("abcdef", "b") == ('acdef',False) assert candidate("abcdedcba","ab") == ('cdedc',True) assert candidate("dwik","w") == ('dik',False) assert candidate("a","a") == ('',True) assert candidate("abcdedcba","") == ('abcdedcba',True) assert candidate("abcdedcba","v") == ('abcdedcba',True) assert candidate("vabba","v") == ('abba',True) assert candidate("mamma", "mia") == ("", True)
0
tab_indent
def reverse_delete(s,c): """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = "abcde", c = "ae", the result should be ('bcd',False) For s = "abcdef", c = "b" the result should be ('acdef',False) For s = "abcdedcba", c = "ab", the result should be ('cdedc',True) """ s = ''.join([char for char in s if char not in c]) # print('@@this is the line to split##') return (s,s[::-1] == s)
HumanEval/113
def odd_count(lst): """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ["the number of odd elements 4n the str4ng 4 of the 4nput."] >>> odd_count(['3',"11111111"]) ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] """ res = [] for arr in lst:
odd_count
n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
def check(candidate): # Check some simple cases assert candidate(['1234567']) == ["the number of odd elements 4n the str4ng 4 of the 4nput."], "Test 1" assert candidate(['3',"11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."], "Test 2" assert candidate(['271', '137', '314']) == [ 'the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.' ] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def odd_count(lst): """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ["the number of odd elements 4n the str4ng 4 of the 4nput."] >>> odd_count(['3',"11111111"]) ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] """ res = [] for arr in lst: # print('@@this is the line to split##') n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
HumanEval/114
def minSubArraySum(nums): """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """ max_sum = 0 s = 0 for num in nums: s += -num if (s < 0):
minSubArraySum
s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
def check(candidate): # Check some simple cases assert candidate([2, 3, 4, 1, 2, 4]) == 1, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1, -2, -3]) == -6 assert candidate([-1, -2, -3, 2, -10]) == -14 assert candidate([-9999999999999999]) == -9999999999999999 assert candidate([0, 10, 20, 1000000]) == 0 assert candidate([-1, -2, -3, 10, -5]) == -6 assert candidate([100, -1, -2, -3, 10, -5]) == -6 assert candidate([10, 11, 13, 8, 3, 4]) == 3 assert candidate([100, -33, 32, -1, 0, -2]) == -33 # Check some edge cases that are easy to work out by hand. assert candidate([-10]) == -10, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([7]) == 7 assert candidate([1, -1]) == -1
0
tab_indent
def minSubArraySum(nums): """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """ max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): # print('@@this is the line to split##') s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
HumanEval/115
def max_fill(grid, capacity): import math """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 6 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 5 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """
max_fill
return sum([math.ceil(sum(arr)/capacity) for arr in grid])
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, "Error" assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, "Error" assert candidate([[0,0,0], [0,0,0]], 5) == 0, "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, "Error" assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, "Error"
0
tab_indent
null
HumanEval/116
def sort_array(arr): """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """
sort_array
return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5] assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3] assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3] assert candidate([]) == [] assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77] assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44] assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32] assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
null
HumanEval/117
def select_words(s, n): """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words("Mary had a little lamb", 4) ==> ["little"] select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"] select_words("simple white space", 2) ==> [] select_words("Hello world", 4) ==> ["world"] select_words("Uncle sam", 3) ==> ["Uncle"] """ result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]:
select_words
n_consonants += 1 if n_consonants == n: result.append(word) return result
def check(candidate): # Check some simple cases assert candidate("Mary had a little lamb", 4) == ["little"], "First test error: " + str(candidate("Mary had a little lamb", 4)) assert candidate("Mary had a little lamb", 3) == ["Mary", "lamb"], "Second test error: " + str(candidate("Mary had a little lamb", 3)) assert candidate("simple white space", 2) == [], "Third test error: " + str(candidate("simple white space", 2)) assert candidate("Hello world", 4) == ["world"], "Fourth test error: " + str(candidate("Hello world", 4)) assert candidate("Uncle sam", 3) == ["Uncle"], "Fifth test error: " + str(candidate("Uncle sam", 3)) # Check some edge cases that are easy to work out by hand. assert candidate("", 4) == [], "1st edge test error: " + str(candidate("", 4)) assert candidate("a b c d e f", 1) == ["b", "c", "d", "f"], "2nd edge test error: " + str(candidate("a b c d e f", 1))
0
tab_indent
def select_words(s, n): """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words("Mary had a little lamb", 4) ==> ["little"] select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"] select_words("simple white space", 2) ==> [] select_words("Hello world", 4) ==> ["world"] select_words("Uncle sam", 3) ==> ["Uncle"] """ result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: # print('@@this is the line to split##') n_consonants += 1 if n_consonants == n: result.append(word) return result
HumanEval/118
def get_closest_vowel(word): """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel("yogurt") ==> "u" get_closest_vowel("FULL") ==> "U" get_closest_vowel("quick") ==> "" get_closest_vowel("ab") ==> "" """ if len(word) < 3: return "" vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
get_closest_vowel
for i in range(len(word)-2, 0, -1): if word[i] in vowels: if (word[i+1] not in vowels) and (word[i-1] not in vowels): return word[i] return ""
def check(candidate): # Check some simple cases assert candidate("yogurt") == "u" assert candidate("full") == "u" assert candidate("easy") == "" assert candidate("eAsy") == "" assert candidate("ali") == "" assert candidate("bad") == "a" assert candidate("most") == "o" assert candidate("ab") == "" assert candidate("ba") == "" assert candidate("quick") == "" assert candidate("anime") == "i" assert candidate("Asia") == "" assert candidate("Above") == "o" # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def get_closest_vowel(word): """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel("yogurt") ==> "u" get_closest_vowel("FULL") ==> "U" get_closest_vowel("quick") ==> "" get_closest_vowel("ab") ==> "" """ if len(word) < 3: return "" vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'} # print('@@this is the line to split##') for i in range(len(word)-2, 0, -1): if word[i] in vowels: if (word[i+1] not in vowels) and (word[i-1] not in vowels): return word[i] return ""
HumanEval/119
def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1
match_parens
if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
def check(candidate): # Check some simple cases assert candidate(['()(', ')']) == 'Yes' assert candidate([')', ')']) == 'No' assert candidate(['(()(())', '())())']) == 'No' assert candidate([')())', '(()()(']) == 'Yes' assert candidate(['(())))', '(()())((']) == 'Yes' assert candidate(['()', '())']) == 'No' assert candidate(['(()(', '()))()']) == 'Yes' assert candidate(['((((', '((())']) == 'No' assert candidate([')(()', '(()(']) == 'No' assert candidate([')(', ')(']) == 'No' # Check some edge cases that are easy to work out by hand. assert candidate(['(', ')']) == 'Yes' assert candidate([')', '(']) == 'Yes'
0
tab_indent
def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1 # print('@@this is the line to split##') if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
HumanEval/120
def maximum(arr, k): """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """ if k == 0: return []
maximum
arr.sort() ans = arr[-k:] return ans
def check(candidate): # Check some simple cases assert candidate([-3, -4, 5], 3) == [-4, -3, 5] assert candidate([4, -4, 4], 2) == [4, 4] assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2] assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123] assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20] assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15] assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5] assert candidate([1, 0, 5, -7], 1) == [5] assert candidate([4, -4], 2) == [-4, 4] assert candidate([-10, 10], 2) == [-10, 10] # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []
0
tab_indent
def maximum(arr, k): """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """ if k == 0: return [] # print('@@this is the line to split##') arr.sort() ans = arr[-k:] return ans
HumanEval/121
def solution(lst): """Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples solution([5, 8, 7, 1]) ==> 12 solution([3, 3, 3, 3, 3]) ==> 9 solution([30, 13, 24, 321]) ==>0 """
solution
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])
def check(candidate): # Check some simple cases assert candidate([5, 8, 7, 1]) == 12 assert candidate([3, 3, 3, 3, 3]) == 9 assert candidate([30, 13, 24, 321]) == 0 assert candidate([5, 9]) == 5 assert candidate([2, 4, 8]) == 0 assert candidate([30, 13, 23, 32]) == 23 assert candidate([3, 13, 2, 9]) == 3 # Check some edge cases that are easy to work out by hand.
0
tab_indent
null
HumanEval/122
def add_elements(arr, k): """ Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """
add_elements
return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)
def check(candidate): # Check some simple cases assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4 assert candidate([111,121,3,4000,5,6], 2) == 0 assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125 assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1], 1) == 1, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
null
HumanEval/123
def get_odd_collatz(n): """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """ if n%2==0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n/2
get_odd_collatz
else: n = n*3 + 1 if n%2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
def check(candidate): # Check some simple cases assert candidate(14) == [1, 5, 7, 11, 13, 17] assert candidate(5) == [1, 5] assert candidate(12) == [1, 3, 5], "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1) == [1], "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def get_odd_collatz(n): """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """ if n%2==0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n/2 # print('@@this is the line to split##') else: n = n*3 + 1 if n%2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
HumanEval/124
def valid_date(date): """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """ try: date = date.strip() month, day, year = date.split('-') month, day, year = int(month), int(day), int(year) if month < 1 or month > 12: return False if month in [1,3,5,7,8,10,12] and day < 1 or day > 31: return False
valid_date
if month in [4,6,9,11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
def check(candidate): # Check some simple cases assert candidate('03-11-2000') == True assert candidate('15-01-2012') == False assert candidate('04-0-2040') == False assert candidate('06-04-2020') == True assert candidate('01-01-2007') == True assert candidate('03-32-2011') == False assert candidate('') == False assert candidate('04-31-3000') == False assert candidate('06-06-2005') == True assert candidate('21-31-2000') == False assert candidate('04-12-2003') == True assert candidate('04122003') == False assert candidate('20030412') == False assert candidate('2003-04') == False assert candidate('2003-04-12') == False assert candidate('04-2003') == False
0
tab_indent
def valid_date(date): """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """ try: date = date.strip() month, day, year = date.split('-') month, day, year = int(month), int(day), int(year) if month < 1 or month > 12: return False if month in [1,3,5,7,8,10,12] and day < 1 or day > 31: return False # print('@@this is the line to split##') if month in [4,6,9,11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
HumanEval/125
def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words("Hello world!") ➞ ["Hello", "world!"] split_words("Hello,world!") ➞ ["Hello", "world!"] split_words("abcdef") == 3 ''' if " " in txt: return txt.split() elif "," in txt:
split_words
return txt.replace(',',' ').split() else: return len([i for i in txt if i.islower() and ord(i)%2 == 0])
def check(candidate): assert candidate("Hello world!") == ["Hello","world!"] assert candidate("Hello,world!") == ["Hello","world!"] assert candidate("Hello world,!") == ["Hello","world,!"] assert candidate("Hello,Hello,world !") == ["Hello,Hello,world","!"] assert candidate("abcdef") == 3 assert candidate("aaabb") == 2 assert candidate("aaaBb") == 1 assert candidate("") == 0
0
tab_indent
def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words("Hello world!") ➞ ["Hello", "world!"] split_words("Hello,world!") ➞ ["Hello", "world!"] split_words("abcdef") == 3 ''' if " " in txt: return txt.split() elif "," in txt: # print('@@this is the line to split##') return txt.replace(',',' ').split() else: return len([i for i in txt if i.islower() and ord(i)%2 == 0])
HumanEval/126
def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False
is_sorted
if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
def check(candidate): # Check some simple cases assert candidate([5]) == True assert candidate([1, 2, 3, 4, 5]) == True assert candidate([1, 3, 2, 4, 5]) == False assert candidate([1, 2, 3, 4, 5, 6]) == True assert candidate([1, 2, 3, 4, 5, 6, 7]) == True assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, "This prints if this assert fails 1 (good for debugging!)" assert candidate([]) == True, "This prints if this assert fails 2 (good for debugging!)" assert candidate([1]) == True, "This prints if this assert fails 3 (good for debugging!)" assert candidate([3, 2, 1]) == False, "This prints if this assert fails 4 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 2, 2, 3, 4]) == False, "This prints if this assert fails 5 (good for debugging!)" assert candidate([1, 2, 3, 3, 3, 4]) == False, "This prints if this assert fails 6 (good for debugging!)" assert candidate([1, 2, 2, 3, 3, 4]) == True, "This prints if this assert fails 7 (good for debugging!)" assert candidate([1, 2, 3, 4]) == True, "This prints if this assert fails 8 (good for debugging!)"
0
tab_indent
def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False # print('@@this is the line to split##') if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
HumanEval/127
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: intersection((1, 2), (2, 3)) ==> "NO" intersection((-1, 1), (0, 4)) ==> "NO" intersection((-3, -1), (-5, 5)) ==> "YES" """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False
intersection
return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
def check(candidate): # Check some simple cases assert candidate((1, 2), (2, 3)) == "NO" assert candidate((-1, 1), (0, 4)) == "NO" assert candidate((-3, -1), (-5, 5)) == "YES" assert candidate((-2, 2), (-4, 0)) == "YES" # Check some edge cases that are easy to work out by hand. assert candidate((-11, 2), (-1, -1)) == "NO" assert candidate((1, 2), (3, 5)) == "NO" assert candidate((1, 2), (1, 2)) == "NO" assert candidate((-2, -2), (-3, -2)) == "NO"
0
tab_indent
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: intersection((1, 2), (2, 3)) ==> "NO" intersection((-1, 1), (0, 4)) ==> "NO" intersection((-3, -1), (-5, 5)) ==> "YES" """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False # print('@@this is the line to split##') return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
HumanEval/128
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """ if not arr: return None
prod_signs
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1, 2, 2, -4]) == -9 assert candidate([0, 1]) == 0 assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10 assert candidate([]) == None assert candidate([2, 4,1, 2, -1, -1, 9]) == 20 assert candidate([-1, 1, -1, 1]) == 4 assert candidate([-1, 1, 1, 1]) == -4 assert candidate([-1, 1, 1, 0]) == 0 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """ if not arr: return None # print('@@this is the line to split##') prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
HumanEval/129
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """ n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
minPath
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
def check(candidate): # Check some simple cases print assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1] assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1] assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2] assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1] assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1] assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1] assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6] assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3] assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5] # Check some edge cases that are easy to work out by hand. assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2] assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]
0
tab_indent
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """ n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: # print('@@this is the line to split##') temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
HumanEval/130
def tri(n): """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """ if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1):
tri
if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
def check(candidate): # Check some simple cases assert candidate(3) == [1, 3, 2.0, 8.0] assert candidate(4) == [1, 3, 2.0, 8.0, 3.0] assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0] assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0] assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0] assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0] assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0] assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0] # Check some edge cases that are easy to work out by hand. assert candidate(0) == [1] assert candidate(1) == [1, 3]
0
tab_indent
def tri(n): """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """ if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): # print('@@this is the line to split##') if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
HumanEval/131
def digits(n): """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """ product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1:
digits
product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
def check(candidate): # Check some simple cases assert candidate(5) == 5 assert candidate(54) == 5 assert candidate(120) ==1 assert candidate(5014) == 5 assert candidate(98765) == 315 assert candidate(5576543) == 2625 # Check some edge cases that are easy to work out by hand. assert candidate(2468) == 0
0
tab_indent
def digits(n): """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """ product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: # print('@@this is the line to split##') product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
HumanEval/132
def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0
is_nested
i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
def check(candidate): # Check some simple cases assert candidate('[[]]') == True, "This prints if this assert fails 1 (good for debugging!)" assert candidate('[]]]]]]][[[[[]') == False assert candidate('[][]') == False assert candidate(('[]')) == False assert candidate('[[[[]]]]') == True assert candidate('[]]]]]]]]]]') == False assert candidate('[][][[]]') == True assert candidate('[[]') == False assert candidate('[]]') == False assert candidate('[[]][[') == True assert candidate('[[][]]') == True # Check some edge cases that are easy to work out by hand. assert candidate('') == False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate('[[[[[[[[') == False assert candidate(']]]]]]]]') == False
0
tab_indent
def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 # print('@@this is the line to split##') i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
HumanEval/133
def sum_squares(lst): """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """ import math squared = 0
sum_squares
for i in lst: squared += math.ceil(i)**2 return squared
def check(candidate): # Check some simple cases assert candidate([1,2,3])==14, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1.0,2,3])==14, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,3,5,7])==84, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1.4,4.2,0])==29, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-2.4,1,1])==6, "This prints if this assert fails 1 (good for debugging!)" assert candidate([100,1,15,2])==10230, "This prints if this assert fails 1 (good for debugging!)" assert candidate([10000,10000])==200000000, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1.4,4.6,6.3])==75, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1.4,17.9,18.9,19.9])==1086, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0])==0, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([-1])==1, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([-1,1,0])==2, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def sum_squares(lst): """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """ import math squared = 0 # print('@@this is the line to split##') for i in lst: squared += math.ceil(i)**2 return squared
HumanEval/134
def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter("apple pie") ➞ False check_if_last_char_is_a_letter("apple pi e") ➞ True check_if_last_char_is_a_letter("apple pi e ") ➞ False check_if_last_char_is_a_letter("") ➞ False '''
check_if_last_char_is_a_letter
check = txt.split(' ')[-1] return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False
def check(candidate): # Check some simple cases assert candidate("apple") == False assert candidate("apple pi e") == True assert candidate("eeeee") == False assert candidate("A") == True assert candidate("Pumpkin pie ") == False assert candidate("Pumpkin pie 1") == False assert candidate("") == False assert candidate("eeeee e ") == False assert candidate("apple pie") == False assert candidate("apple pi e ") == False # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter("apple pie") ➞ False check_if_last_char_is_a_letter("apple pi e") ➞ True check_if_last_char_is_a_letter("apple pi e ") ➞ False check_if_last_char_is_a_letter("") ➞ False ''' # print('@@this is the line to split##') check = txt.split(' ')[-1] return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False
HumanEval/135
def can_arrange(arr): """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """ ind=-1 i=1 while i<len(arr):
can_arrange
if arr[i]<arr[i-1]: ind=i i+=1 return ind
def check(candidate): # Check some simple cases assert candidate([1,2,4,3,5])==3 assert candidate([1,2,4,5])==-1 assert candidate([1,4,2,5,6,7,8,9,10])==2 assert candidate([4,8,5,7,3])==4 # Check some edge cases that are easy to work out by hand. assert candidate([])==-1
0
tab_indent
def can_arrange(arr): """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """ ind=-1 i=1 while i<len(arr): # print('@@this is the line to split##') if arr[i]<arr[i-1]: ind=i i+=1 return ind
HumanEval/136
def largest_smallest_integers(lst): ''' Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1) largest_smallest_integers([]) == (None, None) largest_smallest_integers([0]) == (None, None) ''' smallest = list(filter(lambda x: x < 0, lst))
largest_smallest_integers
largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
def check(candidate): # Check some simple cases assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1) assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1) assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1) assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2) assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2) assert candidate([]) == (None, None) assert candidate([0]) == (None, None) assert candidate([-1, -3, -5, -6]) == (-1, None) assert candidate([-1, -3, -5, -6, 0]) == (-1, None) assert candidate([-6, -4, -4, -3, 1]) == (-3, 1) assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1) # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def largest_smallest_integers(lst): ''' Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1) largest_smallest_integers([]) == (None, None) largest_smallest_integers([0]) == (None, None) ''' smallest = list(filter(lambda x: x < 0, lst)) # print('@@this is the line to split##') largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
HumanEval/137
def compare_one(a, b): """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, "2,3") ➞ "2,3" compare_one("5,1", "6") ➞ "6" compare_one("1", 1) ➞ None """ temp_a, temp_b = a, b if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')
compare_one
if isinstance(temp_b, str): temp_b = temp_b.replace(',','.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
def check(candidate): # Check some simple cases assert candidate(1, 2) == 2 assert candidate(1, 2.5) == 2.5 assert candidate(2, 3) == 3 assert candidate(5, 6) == 6 assert candidate(1, "2,3") == "2,3" assert candidate("5,1", "6") == "6" assert candidate("1", "2") == "2" assert candidate("1", 1) == None # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def compare_one(a, b): """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, "2,3") ➞ "2,3" compare_one("5,1", "6") ➞ "6" compare_one("1", 1) ➞ None """ temp_a, temp_b = a, b if isinstance(temp_a, str): temp_a = temp_a.replace(',','.') # print('@@this is the line to split##') if isinstance(temp_b, str): temp_b = temp_b.replace(',','.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
HumanEval/138
def is_equal_to_sum_even(n): """Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == False is_equal_to_sum_even(6) == False is_equal_to_sum_even(8) == True """
is_equal_to_sum_even
return n%2 == 0 and n >= 8
def check(candidate): assert candidate(4) == False assert candidate(6) == False assert candidate(8) == True assert candidate(10) == True assert candidate(11) == False assert candidate(12) == True assert candidate(13) == False assert candidate(16) == True
0
tab_indent
null
HumanEval/139
def special_factorial(n): """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """ fact_i = 1 special_fact = 1 for i in range(1, n+1):
special_factorial
fact_i *= i special_fact *= fact_i return special_fact
def check(candidate): # Check some simple cases assert candidate(4) == 288, "Test 4" assert candidate(5) == 34560, "Test 5" assert candidate(7) == 125411328000, "Test 7" # Check some edge cases that are easy to work out by hand. assert candidate(1) == 1, "Test 1"
0
tab_indent
def special_factorial(n): """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """ fact_i = 1 special_fact = 1 for i in range(1, n+1): # print('@@this is the line to split##') fact_i *= i special_fact *= fact_i return special_fact
HumanEval/140
def fix_spaces(text): """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces("Example") == "Example" fix_spaces("Example 1") == "Example_1" fix_spaces(" Example 2") == "_Example_2" fix_spaces(" Example 3") == "_Example-3" """ new_text = "" i = 0 start, end = 0, 0 while i < len(text): if text[i] == " ": end += 1 else: if end - start > 2: new_text += "-"+text[i] elif end - start > 0:
fix_spaces
new_text += "_"*(end - start)+text[i] else: new_text += text[i] start, end = i+1, i+1 i+=1 if end - start > 2: new_text += "-" elif end - start > 0: new_text += "_" return new_text
def check(candidate): # Check some simple cases assert candidate("Example") == "Example", "This prints if this assert fails 1 (good for debugging!)" assert candidate("Mudasir Hanif ") == "Mudasir_Hanif_", "This prints if this assert fails 2 (good for debugging!)" assert candidate("Yellow Yellow Dirty Fellow") == "Yellow_Yellow__Dirty__Fellow", "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate("Exa mple") == "Exa-mple", "This prints if this assert fails 4 (good for debugging!)" assert candidate(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple", "This prints if this assert fails 4 (good for debugging!)"
0
tab_indent
def fix_spaces(text): """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces("Example") == "Example" fix_spaces("Example 1") == "Example_1" fix_spaces(" Example 2") == "_Example_2" fix_spaces(" Example 3") == "_Example-3" """ new_text = "" i = 0 start, end = 0, 0 while i < len(text): if text[i] == " ": end += 1 else: if end - start > 2: new_text += "-"+text[i] elif end - start > 0: # print('@@this is the line to split##') new_text += "_"*(end - start)+text[i] else: new_text += text[i] start, end = i+1, i+1 i+=1 if end - start > 2: new_text += "-" elif end - start > 0: new_text += "_" return new_text
HumanEval/141
def file_name_check(file_name): """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check("example.txt") # => 'Yes' file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter) """ suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0:
file_name_check
return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
def check(candidate): # Check some simple cases assert candidate("example.txt") == 'Yes' assert candidate("1example.dll") == 'No' assert candidate('s1sdf3.asd') == 'No' assert candidate('K.dll') == 'Yes' assert candidate('MY16FILE3.exe') == 'Yes' assert candidate('His12FILE94.exe') == 'No' assert candidate('_Y.txt') == 'No' assert candidate('?aREYA.exe') == 'No' assert candidate('/this_is_valid.dll') == 'No' assert candidate('this_is_valid.wow') == 'No' assert candidate('this_is_valid.txt') == 'Yes' assert candidate('this_is_valid.txtexe') == 'No' assert candidate('#this2_i4s_5valid.ten') == 'No' assert candidate('@this1_is6_valid.exe') == 'No' assert candidate('this_is_12valid.6exe4.txt') == 'No' assert candidate('all.exe.txt') == 'No' assert candidate('I563_No.exe') == 'Yes' assert candidate('Is3youfault.txt') == 'Yes' assert candidate('no_one#knows.dll') == 'Yes' assert candidate('1I563_Yes3.exe') == 'No' assert candidate('I563_Yes3.txtt') == 'No' assert candidate('final..txt') == 'No' assert candidate('final132') == 'No' assert candidate('_f4indsartal132.') == 'No' # Check some edge cases that are easy to work out by hand. assert candidate('.txt') == 'No' assert candidate('s.') == 'No'
0
tab_indent
def file_name_check(file_name): """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check("example.txt") # => 'Yes' file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter) """ suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0: # print('@@this is the line to split##') return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
HumanEval/142
def sum_squares(lst): """" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """ result =[] for i in range(len(lst)): if i %3 == 0: result.append(lst[i]**2)
sum_squares
elif i % 4 == 0 and i%3 != 0: result.append(lst[i]**3) else: result.append(lst[i]) return sum(result)
def check(candidate): # Check some simple cases assert candidate([1,2,3]) == 6 assert candidate([1,4,9]) == 14 assert candidate([]) == 0 assert candidate([1,1,1,1,1,1,1,1,1]) == 9 assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3 assert candidate([0]) == 0 assert candidate([-1,-5,2,-1,-5]) == -126 assert candidate([-56,-99,1,0,-2]) == 3030 assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0 assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196 assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448 # Don't remove this line:
0
tab_indent
def sum_squares(lst): """" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """ result =[] for i in range(len(lst)): if i %3 == 0: result.append(lst[i]**2) # print('@@this is the line to split##') elif i % 4 == 0 and i%3 != 0: result.append(lst[i]**3) else: result.append(lst[i]) return sum(result)
HumanEval/143
def words_in_sentence(sentence): """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = "This is a test" Output: "is" Example 2: Input: sentence = "lets go for swimming" Output: "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1
words_in_sentence
for i in range(2, len(word)): if len(word)%i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return " ".join(new_lst)
def check(candidate): # Check some simple cases assert candidate("This is a test") == "is" assert candidate("lets go for swimming") == "go for" assert candidate("there is no place available here") == "there is no place" assert candidate("Hi I am Hussein") == "Hi am Hussein" assert candidate("go for it") == "go for it" # Check some edge cases that are easy to work out by hand. assert candidate("here") == "" assert candidate("here is") == "is"
0
tab_indent
def words_in_sentence(sentence): """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = "This is a test" Output: "is" Example 2: Input: sentence = "lets go for swimming" Output: "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1 # print('@@this is the line to split##') for i in range(2, len(word)): if len(word)%i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return " ".join(new_lst)
HumanEval/144
def simplify(x, n): """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify("1/5", "5/1") = True simplify("1/6", "2/1") = False simplify("7/10", "10/2") = False """ a, b = x.split("/") c, d = n.split("/") numerator = int(a) * int(c)
simplify
denom = int(b) * int(d) if (numerator/denom == int(numerator/denom)): return True return False
def check(candidate): # Check some simple cases assert candidate("1/5", "5/1") == True, 'test1' assert candidate("1/6", "2/1") == False, 'test2' assert candidate("5/1", "3/1") == True, 'test3' assert candidate("7/10", "10/2") == False, 'test4' assert candidate("2/10", "50/10") == True, 'test5' assert candidate("7/2", "4/2") == True, 'test6' assert candidate("11/6", "6/1") == True, 'test7' assert candidate("2/3", "5/2") == False, 'test8' assert candidate("5/2", "3/5") == False, 'test9' assert candidate("2/4", "8/4") == True, 'test10' # Check some edge cases that are easy to work out by hand. assert candidate("2/4", "4/2") == True, 'test11' assert candidate("1/5", "5/1") == True, 'test12' assert candidate("1/5", "1/5") == False, 'test13'
0
tab_indent
def simplify(x, n): """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify("1/5", "5/1") = True simplify("1/6", "2/1") = False simplify("7/10", "10/2") = False """ a, b = x.split("/") c, d = n.split("/") numerator = int(a) * int(c) # print('@@this is the line to split##') denom = int(b) * int(d) if (numerator/denom == int(numerator/denom)): return True return False
HumanEval/145
def order_by_points(nums): """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1
order_by_points
n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
def check(candidate): # Check some simple cases assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457] assert candidate([]) == [] assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54] assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9] assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def order_by_points(nums): """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 # print('@@this is the line to split##') n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
HumanEval/146
def specialFilter(nums): """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9)
specialFilter
number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
def check(candidate): # Check some simple cases assert candidate([5, -2, 1, -5]) == 0 assert candidate([15, -73, 14, -15]) == 1 assert candidate([33, -2, -3, 45, 21, 109]) == 2 assert candidate([43, -12, 93, 125, 121, 109]) == 4 assert candidate([71, -2, -33, 75, 21, 19]) == 3 # Check some edge cases that are easy to work out by hand. assert candidate([1]) == 0 assert candidate([]) == 0
0
tab_indent
def specialFilter(nums): """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) # print('@@this is the line to split##') number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
HumanEval/147
def get_max_triples(n): """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ A = [i*i - i + 1 for i in range(1,n+1)] ans = [] for i in range(n): for j in range(i+1,n):
get_max_triples
for k in range(j+1,n): if (A[i]+A[j]+A[k])%3 == 0: ans += [(A[i],A[j],A[k])] return len(ans)
def check(candidate): assert candidate(5) == 1 assert candidate(6) == 4 assert candidate(10) == 36 assert candidate(100) == 53361
0
tab_indent
def get_max_triples(n): """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≤ i ≤ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ A = [i*i - i + 1 for i in range(1,n+1)] ans = [] for i in range(n): for j in range(i+1,n): # print('@@this is the line to split##') for k in range(j+1,n): if (A[i]+A[j]+A[k])%3 == 0: ans += [(A[i],A[j],A[k])] return len(ans)
HumanEval/148
def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus") bf("Earth", "Mercury") ==> ("Venus") bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn") ''' planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune") if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1)
bf
planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return (planet_names[planet1_index + 1: planet2_index]) else: return (planet_names[planet2_index + 1 : planet1_index])
def check(candidate): # Check some simple cases assert candidate("Jupiter", "Neptune") == ("Saturn", "Uranus"), "First test error: " + str(len(candidate("Jupiter", "Neptune"))) assert candidate("Earth", "Mercury") == ("Venus",), "Second test error: " + str(candidate("Earth", "Mercury")) assert candidate("Mercury", "Uranus") == ("Venus", "Earth", "Mars", "Jupiter", "Saturn"), "Third test error: " + str(candidate("Mercury", "Uranus")) assert candidate("Neptune", "Venus") == ("Earth", "Mars", "Jupiter", "Saturn", "Uranus"), "Fourth test error: " + str(candidate("Neptune", "Venus")) # Check some edge cases that are easy to work out by hand. assert candidate("Earth", "Earth") == () assert candidate("Mars", "Earth") == () assert candidate("Jupiter", "Makemake") == ()
0
tab_indent
def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus") bf("Earth", "Mercury") ==> ("Venus") bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn") ''' planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune") if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1) # print('@@this is the line to split##') planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return (planet_names[planet1_index + 1: planet2_index]) else: return (planet_names[planet2_index + 1 : planet1_index])
HumanEval/149
def sorted_list_sum(lst): """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort(["aa", "a", "aaa"]) => ["aa"] assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"] """ lst.sort() new_lst = [] for i in lst:
sorted_list_sum
if len(i)%2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
def check(candidate): # Check some simple cases assert candidate(["aa", "a", "aaa"]) == ["aa"] assert candidate(["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"] assert candidate(["d", "b", "c", "a"]) == [] assert candidate(["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"] # Check some edge cases that are easy to work out by hand. assert candidate(["AI", "ai", "au"]) == ["AI", "ai", "au"] assert candidate(["a", "b", "b", "c", "c", "a"]) == [] assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == ["cc", "dd", "aaaa", "bbbb"]
0
tab_indent
def sorted_list_sum(lst): """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort(["aa", "a", "aaa"]) => ["aa"] assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"] """ lst.sort() new_lst = [] for i in lst: # print('@@this is the line to split##') if len(i)%2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
HumanEval/150
def x_or_y(n, x, y): """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """ if n == 1: return y for i in range(2, n): if n % i == 0:
x_or_y
return y break else: return x
def check(candidate): # Check some simple cases assert candidate(7, 34, 12) == 34 assert candidate(15, 8, 5) == 5 assert candidate(3, 33, 5212) == 33 assert candidate(1259, 3, 52) == 3 assert candidate(7919, -1, 12) == -1 assert candidate(3609, 1245, 583) == 583 assert candidate(91, 56, 129) == 129 assert candidate(6, 34, 1234) == 1234 # Check some edge cases that are easy to work out by hand. assert candidate(1, 2, 0) == 0 assert candidate(2, 2, 0) == 2
0
tab_indent
def x_or_y(n, x, y): """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """ if n == 1: return y for i in range(2, n): if n % i == 0: # print('@@this is the line to split##') return y break else: return x
HumanEval/151
def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. '''
double_the_difference
return sum([i**2 for i in lst if i > 0 and i%2!=0 and "." not in str(i)])
def check(candidate): # Check some simple cases assert candidate([]) == 0 , "This prints if this assert fails 1 (good for debugging!)" assert candidate([5, 4]) == 25 , "This prints if this assert fails 2 (good for debugging!)" assert candidate([0.1, 0.2, 0.3]) == 0 , "This prints if this assert fails 3 (good for debugging!)" assert candidate([-10, -20, -30]) == 0 , "This prints if this assert fails 4 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([-1, -2, 8]) == 0, "This prints if this assert fails 5 (also good for debugging!)" assert candidate([0.2, 3, 5]) == 34, "This prints if this assert fails 6 (also good for debugging!)" lst = list(range(-99, 100, 2)) odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0]) assert candidate(lst) == odd_sum , "This prints if this assert fails 7 (good for debugging!)"
0
tab_indent
null
HumanEval/152
def compare(game,guess): """I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] """
compare
return [abs(x-y) for x,y in zip(game,guess)]
def check(candidate): # Check some simple cases assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], "This prints if this assert fails 1 (good for debugging!)" assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
null
HumanEval/153
def Strongest_Extension(class_name, extensions): """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """ strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val:
Strongest_Extension
strong = s my_val = val ans = class_name + "." + strong return ans
def check(candidate): # Check some simple cases assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe' assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe' assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__' assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR' assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123' assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123' assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW' # Check some edge cases that are easy to work out by hand. assert candidate('_', ['Bb', '91245']) == '_.Bb' assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'
0
tab_indent
def Strongest_Extension(class_name, extensions): """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """ strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val: # print('@@this is the line to split##') strong = s my_val = val ans = class_name + "." + strong return ans
HumanEval/154
def cycpattern_check(a , b): """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check("abcd","abd") => False cycpattern_check("hello","ell") => True cycpattern_check("whassup","psus") => False cycpattern_check("abab","baa") => True cycpattern_check("efef","eeff") => False cycpattern_check("himenss","simen") => True """ l = len(b) pat = b + b for i in range(len(a) - l + 1):
cycpattern_check
for j in range(l + 1): if a[i:i+l] == pat[j:j+l]: return True return False
def check(candidate): # Check some simple cases #assert True, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. #assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate("xyzw","xyw") == False , "test #0" assert candidate("yello","ell") == True , "test #1" assert candidate("whattup","ptut") == False , "test #2" assert candidate("efef","fee") == True , "test #3" assert candidate("abab","aabb") == False , "test #4" assert candidate("winemtt","tinem") == True , "test #5"
0
tab_indent
def cycpattern_check(a , b): """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check("abcd","abd") => False cycpattern_check("hello","ell") => True cycpattern_check("whassup","psus") => False cycpattern_check("abab","baa") => True cycpattern_check("efef","eeff") => False cycpattern_check("himenss","simen") => True """ l = len(b) pat = b + b for i in range(len(a) - l + 1): # print('@@this is the line to split##') for j in range(l + 1): if a[i:i+l] == pat[j:j+l]: return True return False
HumanEval/155
def even_odd_count(num): """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """ even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i)%2==0:
even_odd_count
even_count +=1 else: odd_count +=1 return (even_count, odd_count)
def check(candidate): # Check some simple cases assert candidate(7) == (0, 1) assert candidate(-78) == (1, 1) assert candidate(3452) == (2, 2) assert candidate(346211) == (3, 3) assert candidate(-345821) == (3, 3) assert candidate(-2) == (1, 0) assert candidate(-45347) == (2, 3) assert candidate(0) == (1, 0) # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def even_odd_count(num): """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """ even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i)%2==0: # print('@@this is the line to split##') even_count +=1 else: odd_count +=1 return (even_count, odd_count)
HumanEval/156
def int_to_mini_roman(number): """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """ num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ["I", "IV", "V", "IX", "X", "XL", "L", "XC", "C", "CD", "D", "CM", "M"] i = 12 res = '' while number:
int_to_mini_roman
div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
def check(candidate): # Check some simple cases assert candidate(19) == 'xix' assert candidate(152) == 'clii' assert candidate(251) == 'ccli' assert candidate(426) == 'cdxxvi' assert candidate(500) == 'd' assert candidate(1) == 'i' assert candidate(4) == 'iv' assert candidate(43) == 'xliii' assert candidate(90) == 'xc' assert candidate(94) == 'xciv' assert candidate(532) == 'dxxxii' assert candidate(900) == 'cm' assert candidate(994) == 'cmxciv' assert candidate(1000) == 'm' # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def int_to_mini_roman(number): """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """ num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ["I", "IV", "V", "IX", "X", "XL", "L", "XC", "C", "CD", "D", "CM", "M"] i = 12 res = '' while number: # print('@@this is the line to split##') div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
HumanEval/157
def right_angle_triangle(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == True right_angle_triangle(1, 2, 3) == False '''
right_angle_triangle
return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b
def check(candidate): # Check some simple cases assert candidate(3, 4, 5) == True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1, 2, 3) == False assert candidate(10, 6, 8) == True assert candidate(2, 2, 2) == False assert candidate(7, 24, 25) == True assert candidate(10, 5, 7) == False assert candidate(5, 12, 13) == True assert candidate(15, 8, 17) == True assert candidate(48, 55, 73) == True # Check some edge cases that are easy to work out by hand. assert candidate(1, 1, 1) == False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(2, 2, 10) == False
0
tab_indent
null
HumanEval/158
def find_max(words): """Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max(["name", "of", "string"]) == "string" find_max(["name", "enam", "game"]) == "enam" find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa" """
find_max
return sorted(words, key = lambda x: (-len(set(x)), x))[0]
def check(candidate): # Check some simple cases assert (candidate(["name", "of", "string"]) == "string"), "t1" assert (candidate(["name", "enam", "game"]) == "enam"), 't2' assert (candidate(["aaaaaaa", "bb", "cc"]) == "aaaaaaa"), 't3' assert (candidate(["abc", "cba"]) == "abc"), 't4' assert (candidate(["play", "this", "game", "of","footbott"]) == "footbott"), 't5' assert (candidate(["we", "are", "gonna", "rock"]) == "gonna"), 't6' assert (candidate(["we", "are", "a", "mad", "nation"]) == "nation"), 't7' assert (candidate(["this", "is", "a", "prrk"]) == "this"), 't8' # Check some edge cases that are easy to work out by hand. assert (candidate(["b"]) == "b"), 't9' assert (candidate(["play", "play", "play"]) == "play"), 't10'
0
tab_indent
null
HumanEval/159
def eat(number, need, remaining): """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ if(need <= remaining): return [ number + need , remaining-need ]
eat
else: return [ number + remaining , 0]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(5, 6, 10) == [11, 4], "Error" assert candidate(4, 8, 9) == [12, 1], "Error" assert candidate(1, 10, 10) == [11, 0], "Error" assert candidate(2, 11, 5) == [7, 0], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(4, 5, 7) == [9, 2], "Error" assert candidate(4, 5, 1) == [5, 0], "Error"
0
tab_indent
def eat(number, need, remaining): """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ if(need <= remaining): return [ number + need , remaining-need ] # print('@@this is the line to split##') else: return [ number + remaining , 0]
HumanEval/160
def do_algebra(operator, operand): """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ expression = str(operand[0]) for oprt, oprn in zip(operator, operand[1:]):
do_algebra
expression+= oprt + str(oprn) return eval(expression)
def check(candidate): # Check some simple cases assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37 assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9 assert candidate(['//', '*'], [7, 3, 4]) == 8, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def do_algebra(operator, operand): """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ expression = str(operand[0]) for oprt, oprn in zip(operator, operand[1:]): # print('@@this is the line to split##') expression+= oprt + str(oprn) return eval(expression)
HumanEval/161
def solve(s): """You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve("1234") = "4321" solve("ab") = "AB" solve("#a@C") = "#A@c" """ flg = 0 idx = 0 new_str = list(s) for i in s: if i.isalpha(): new_str[idx] = i.swapcase() flg = 1
solve
idx += 1 s = "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] return s
def check(candidate): # Check some simple cases assert candidate("AsDf") == "aSdF" assert candidate("1234") == "4321" assert candidate("ab") == "AB" assert candidate("#a@C") == "#A@c" assert candidate("#AsdfW^45") == "#aSDFw^45" assert candidate("#6@2") == "2@6#" # Check some edge cases that are easy to work out by hand. assert candidate("#$a^D") == "#$A^d" assert candidate("#ccc") == "#CCC" # Don't remove this line:
0
tab_indent
def solve(s): """You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve("1234") = "4321" solve("ab") = "AB" solve("#a@C") = "#A@c" """ flg = 0 idx = 0 new_str = list(s) for i in s: if i.isalpha(): new_str[idx] = i.swapcase() flg = 1 # print('@@this is the line to split##') idx += 1 s = "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] return s
HumanEval/162
def string_to_md5(text): """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """ import hashlib
string_to_md5
return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
def check(candidate): # Check some simple cases assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' assert candidate('') == None assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888' assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99' # Check some edge cases that are easy to work out by hand. assert True
0
tab_indent
def string_to_md5(text): """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """ import hashlib # print('@@this is the line to split##') return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
HumanEval/163
def generate_integers(a, b): """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """ lower = max(2, min(a, b)) upper = min(8, max(a, b))
generate_integers
return [i for i in range(lower, upper+1) if i % 2 == 0]
def check(candidate): # Check some simple cases assert candidate(2, 10) == [2, 4, 6, 8], "Test 1" assert candidate(10, 2) == [2, 4, 6, 8], "Test 2" assert candidate(132, 2) == [2, 4, 6, 8], "Test 3" assert candidate(17,89) == [], "Test 4" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
tab_indent
def generate_integers(a, b): """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """ lower = max(2, min(a, b)) upper = min(8, max(a, b)) # print('@@this is the line to split##') return [i for i in range(lower, upper+1) if i % 2 == 0]