Edit model card

llama3-8b-spaetzle-v20

llama3-8b-spaetzle-v20 is an int4-inc (intel auto-round) quantized merge of the following models:

Benchmarks

The GGUF q4_k_m version achieves on EQ-Bench v2_de 65.7 (171/171 parseable). From Intel's low bit open llm leaderboard:

Type Model Average 猬嗭笍 ARC-c ARC-e Boolq HellaSwag Lambada MMLU Openbookqa Piqa Truthfulqa Winogrande #Params (B) #Size (G)
馃崚 cstr/llama3-8b-spaetzle-v20-int4-inc 66.43 61.77 85.4 82.75 62.79 71.73 64.17 37.4 80.41 43.21 74.66 7.04 5.74

馃З Configuration

models:
  - model: cstr/llama3-8b-spaetzle-v13
    # no parameters necessary for base model
  - model: nbeerbower/llama-3-wissenschaft-8B-v2
    parameters:
      density: 0.65
      weight: 0.4        
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v13
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

馃捇 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/llama3-8b-spaetzle-v20"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
5
Safetensors
Model size
1.99B params
Tensor type
I32
BF16
FP16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.