llama3-8b-spaetzle-v20
llama3-8b-spaetzle-v20 is an int4-inc (intel auto-round) quantized merge of the following models:
Benchmarks
The GGUF q4_k_m version achieves on EQ-Bench v2_de 65.7 (171/171 parseable). From Intel's low bit open llm leaderboard:
Type | Model | Average 猬嗭笍 | ARC-c | ARC-e | Boolq | HellaSwag | Lambada | MMLU | Openbookqa | Piqa | Truthfulqa | Winogrande | #Params (B) | #Size (G) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
馃崚 | cstr/llama3-8b-spaetzle-v20-int4-inc | 66.43 | 61.77 | 85.4 | 82.75 | 62.79 | 71.73 | 64.17 | 37.4 | 80.41 | 43.21 | 74.66 | 7.04 | 5.74 |
馃З Configuration
models:
- model: cstr/llama3-8b-spaetzle-v13
# no parameters necessary for base model
- model: nbeerbower/llama-3-wissenschaft-8B-v2
parameters:
density: 0.65
weight: 0.4
merge_method: dare_ties
base_model: cstr/llama3-8b-spaetzle-v13
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
馃捇 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3-8b-spaetzle-v20"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.