Model description
This model is a fine-tuned version of coastalcph/danish-legal-longformer-base on the Danish part of MultiEURLEX dataset.
Training and evaluation data
The Danish part of MultiEURLEX dataset.
Use of Model
As a text classifier:
from transformers import pipeline
import numpy as np
# Init text classification pipeline
text_cls_pipe = pipeline(task="text-classification",
model="coastalcph/danish-legal-longformer-eurlex",
use_auth_token='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')
# Encode and Classify document
predictions = text_cls_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
# Print prediction
print(predictions)
# [{'label': 'building and public works', 'score': 0.9626012444496155}]
As a feature extractor (document embedder):
from transformers import pipeline
import numpy as np
# Init feature extraction pipeline
feature_extraction_pipe = pipeline(task="feature-extraction",
model="coastalcph/danish-legal-longformer-eurlex",
use_auth_token='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')
# Encode document
predictions = feature_extraction_pipe("KOMMISSIONENS BESLUTNING\naf 6. marts 2006\nom klassificering af visse byggevarers "
"ydeevne med hensyn til reaktion ved brand for så vidt angår trægulve samt vægpaneler "
"og vægbeklædning i massivt træ\n(meddelt under nummer K(2006) 655")
# Use CLS token representation as document embedding
document_features = token_wise_features[0][0]
print(document_features.shape)
# (768,)
Framework versions
- Transformers 4.18.0
- Pytorch 1.12.0+cu113
- Datasets 2.0.0
- Tokenizers 0.12.1
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train coastalcph/danish-legal-longformer-eurlex
Evaluation results
- Micro-F1 on multi_eurlexvalidation set self-reported0.757
- Macro-F1 on multi_eurlexvalidation set self-reported0.529