Kubernetes AI - 4bit Safetensors

Fine-tuned Gemma 3 12B model specialized for answering Kubernetes questions in Turkish, quantized to 4bit format for efficient inference with reduced memory footprint.

Model Description

This repository contains a 4bit quantized version of the Kubernetes AI model, optimized for running on consumer hardware with reduced VRAM/RAM requirements. The model uses BitsAndBytes quantization with safetensors format for fast loading and efficient inference.

Primary Purpose: Answer Kubernetes-related questions in Turkish language with minimal hardware requirements.

Model Specifications

Specification Details
Format Safetensors (4bit quantized)
Base Model unsloth/gemma-3-12b-it-qat-bnb-4bit
Quantization 4bit (BitsAndBytes)
Model Size ~7.2 GB
Memory Usage ~8-10 GB VRAM/RAM
Precision 4bit weights, FP16 compute

Quick Start

Installation

# Install required packages
pip install torch transformers accelerate bitsandbytes safetensors

Basic Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model_name = "aciklab/kubernetes-ai-4bit"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    trust_remote_code=True
)

# Prepare input
prompt = "Kubernetes'te 3 replikaya sahip bir deployment nasıl oluştururum?"

# Format with chat template
messages = [
    {"role": "system", "content": "Sen Kubernetes konusunda uzmanlaşmış bir yapay zeka asistanısın. Kubernetes ile ilgili soruları Türkçe olarak yanıtlıyorsun."},
    {"role": "user", "content": prompt}
]

input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)

# Generate response
outputs = model.generate(
    **inputs,
    max_new_tokens=512,
    temperature=1.0,
    top_p=0.95,
    top_k=64,
    repetition_penalty=1.05,
    do_sample=True
)

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Training Details

This model is based on the aciklab/kubernetes-ai LoRA adapters:

  • Base Model: unsloth/gemma-3-12b-it-qat-bnb-4bit
  • Training Method: LoRA (Low-Rank Adaptation)
  • LoRA Rank: 8
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
  • Training Dataset: ~157,210 examples from Kubernetes docs, Stack Overflow, and DevOps datasets
  • Training Time: 28 hours on NVIDIA RTX 5070 12GB
  • Max Sequence Length: 1024 tokens

Training Dataset Summary

Dataset Category Count Description
Kubernetes Official Docs 8,910 Concepts, kubectl, setup, tasks, tutorials
Stack Overflow 52,000 Kubernetes Q&A from community
DevOps Datasets 62,500 General DevOps and Kubernetes content
Configurations & CLI 36,800 Kubernetes configs, kubectl examples, operators
Total ~157,210 Comprehensive Kubernetes knowledge base

Quantization Details

This model uses 4bit quantization with BitsAndBytes for optimal memory efficiency:

  • Source: Merged LoRA adapters with base model
  • Quantization Method: BitsAndBytes 4bit (NF4)
  • Compute Precision: FP16
  • Format: Safetensors (fast loading)
  • Memory Footprint: ~7.2 GB on disk, ~8-10 GB in memory

Advantages of 4bit Format

  • Efficient Memory Usage: Runs on GPUs with 8GB+ VRAM
  • Fast Loading: Safetensors format loads quickly
  • Good Quality: Minimal accuracy loss compared to full precision
  • Framework Support: Compatible with Transformers, vLLM, Text Generation Inference
  • Flexible Deployment: Can run on CPU with acceptable speed

Hardware Requirements

Minimum (GPU)

  • GPU: 8GB VRAM
  • RAM: 8GB system memory
  • Storage: 10GB free space

Recommended

  • GPU: 12GB+ VRAM
  • RAM: 16GB system memory
  • Storage: 15GB free space

Limitations

  • Language: Optimized primarily for Turkish and English.
  • Domain: Specialized for Kubernetes; may not perform well on general topics
  • Quantization: 4bit quantization may occasionally affect response quality on complex queries

License

This model is released under the MIT License. Free to use in commercial and open-source projects.

Citation

If you use this model in your research or applications, please cite:

@misc{kubernetes-ai-4bit,
  author = {HAVELSAN/Açıklab},
  title = {Kubernetes AI - 4bit Safetensors},
  year = {2025},
  publisher = {HuggingFace},
  howpublished = {\url{https://huggingface.co/aciklab/kubernetes-ai-4bit}}
}

Contact

Produced by: HAVELSAN/Açıklab

For questions, feedback, or issues, please open an issue on the model repository or contact us through HuggingFace.

Related Models


Note: This is a 4bit quantized model ready for immediate use with the Transformers library. No additional model merging or quantization required.

Downloads last month
27
Safetensors
Model size
12B params
Tensor type
F32
·
BF16
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aciklab/kubernetes-ai-4bit