Kubernetes AI - Gemma 3 12B LoRA Adapters
Fine-tuned Gemma 3 12B model specialized for answering Kubernetes questions in Turkish.
Model Description
This model consists of LoRA adapters fine-tuned on unsloth/gemma-3-12b-it-qat-bnb-4bit
using a comprehensive dataset of Kubernetes documentation, Stack Overflow questions, and DevOps scenarios.
Primary Purpose: Answer Kubernetes-related questions in Turkish language.
Use Cases
- Kubernetes cluster management and troubleshooting
- YAML configuration generation and validation
- kubectl command assistance
- Debugging pod, service, and deployment issues
- Kubernetes best practices and concepts
- DevOps workflow optimization
- Turkish language Kubernetes Q&A
Quick Start
Loading the Model
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
# Load base Gemma 3 12B model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/gemma-3-12b-it-qat-bnb-4bit",
max_seq_length=2048,
dtype=None,
load_in_4bit=True, # Use 4-bit quantization to fit in GPU memory
)
# Load Kubernetes AI LoRA adapters
model = PeftModel.from_pretrained(
model,
"aciklab/kubernetes-ai"
)
# Enable inference mode
FastLanguageModel.for_inference(model)
# Example usage (Turkish question)
messages = [
{"role": "user", "content": "Kubernetes'te 3 replikaya sahip bir deployment nasıl oluştururum?"}
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
outputs = model.generate(
input_ids=inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Example Questions
Turkish Examples
# Deployment creation
"Node.js uygulaması için 3 replika, sağlık kontrolleri ve kaynak limitleri olan bir Kubernetes deployment oluştur."
# Troubleshooting
"Pod'um CrashLoopBackOff durumunda. Yaygın nedenleri nelerdir ve nasıl debug ederim?"
# kubectl commands
"Production namespace'indeki çalışmayan tüm pod'ları gösteren kubectl komutunu yaz."
# Best practices
"Kubernetes'te container güvenliği için en iyi uygulamalar nelerdir?"
# Service creation
"LoadBalancer tipinde bir Kubernetes servisi nasıl yapılandırılır?"
English Examples
"How do I create a Kubernetes deployment with 3 replicas?"
"What are the common causes of CrashLoopBackOff?"
"Show me kubectl command to get all pods in production namespace."
Training Dataset
The model was trained on ~157,000 examples from multiple high-quality Kubernetes and DevOps datasets:
Dataset | Count | Description |
---|---|---|
Kubernetes Official Documentation | ||
- Concepts | 2,700 | Core Kubernetes concepts |
- Kubectl Reference | 600 | kubectl command documentation |
- Setup Guides | 430 | Installation and setup |
- Tasks | 4,300 | Practical task guides |
- Tutorials | 880 | Step-by-step tutorials |
Stack Overflow | ||
mcipriano/stackoverflow-kubernetes-questions | 30,000 | Kubernetes Q&A |
peterpanpan/stackoverflow-kubernetes-questions | 22,000 | Additional Kubernetes Q&A |
DevOps Datasets | ||
Szaid3680/Devops | 42,000 | General DevOps content |
ahmedgongi/Devops_LLM | 20,500 | Kubernetes-filtered DevOps (from 140k) |
Configuration & Operations | ||
HelloBoieeee/kubernetes_config | 10,000 | Kubernetes configurations |
sidddddddddddd/kubernetes-with-ood | 6,000 | Kubernetes scenarios (incl. Turkish translations) |
dereklck/kubernetes_cli_dataset_20k | 19,000 | kubectl CLI examples |
dereklck/kubernetes_operator_3b_1.5k | 1,800 | Kubernetes operator patterns |
Total Training Examples: ~157,210
Training Details
- Base Model: unsloth/gemma-3-12b-it-qat-bnb-4bit
- Method: LoRA (Low-Rank Adaptation)
- Framework: Unsloth
- LoRA Rank: 8
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
- Training Checkpoint: checkpoint-8175
- Max Sequence Length: 1024 tokens
- Training Time: 28 hours
- Hardware: NVIDIA GeForce RTX 5070 12GB
Hardware Requirements
- Minimum VRAM: 12GB (with 4-bit quantization)
- Recommended VRAM: 24GB (for faster inference)
- CPU RAM: 32GB+
- Training Hardware: RTX 5070 12GB
Limitations
- May not have information on very recent Kubernetes features released after training
- Primarily trained for Turkish language responses, though it can handle English queries
- Best suited for technical Kubernetes questions; general conversation capabilities can be limited
Performance Notes
- Trained on RTX 5070 12GB in 28 hours
- Works with 12GB VRAM using 4-bit quantization
- Fast startup by loading only adapters without full model reload
License
This model is released under the MIT License. Free to use in commercial and open-source projects.
Acknowledgments
- Google and Unsloth team for the Gemma 3 base model
- Unsloth team for the efficient training framework
- All dataset contributors
- Kubernetes community for comprehensive documentation
- NVIDIA for RTX 5070 enabling 28-hour training
Contact
For questions or feedback, please open an issue on the model repository.
Note: This is a LoRA adapter, not a full model. You must load it on top of unsloth/gemma-3-12b-it-qat-bnb-4bit
to use it.
Related Links
Citations
Datasets
@misc{stackoverflow-kubernetes-mcipriano,
author = {mcipriano},
title = {Stack Overflow Kubernetes Questions},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/mcipriano/stackoverflow-kubernetes-questions}
}
@misc{devops-szaid,
author = {Szaid3680},
title = {DevOps Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/Szaid3680/Devops}
}
@misc{devops-llm-ahmed,
author = {ahmedgongi},
title = {DevOps LLM Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/ahmedgongi/Devops_LLM}
}
@misc{kubernetes-config-hello,
author = {HelloBoieeee},
title = {Kubernetes Config Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/HelloBoieeee/kubernetes_config}
}
@misc{kubernetes-ood-sidddddddddddd,
author = {sidddddddddddd},
title = {Kubernetes with OOD Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/sidddddddddddd/kubernetes-with-ood}
}
@misc{stackoverflow-kubernetes-peter,
author = {peterpanpan},
title = {Stack Overflow Kubernetes Questions},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/peterpanpan/stackoverflow-kubernetes-questions}
}
@misc{kubernetes-operator-derek,
author = {dereklck},
title = {Kubernetes Operator Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/dereklck/kubernetes_operator_3b_1.5k}
}
@misc{kubernetes-cli-derek,
author = {dereklck},
title = {Kubernetes CLI Dataset},
year = {2024},
publisher = {HuggingFace},
url = {https://huggingface.co/datasets/dereklck/kubernetes_cli_dataset_20k}
}
Model
@misc{kubernetes-ai,
author = {aciklab},
title = {Kubernetes AI Turkish - Gemma 3 12B LoRA Adapters},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/aciklab/kubernetes-ai},
note = {Trained on RTX 5070 12GB in 28 hours}
}
- Downloads last month
- 36
Model tree for aciklab/kubernetes-ai-lora
Base model
google/gemma-3-12b-pt