Edit model card

WIP

(Please bear with me, this model will get better and get a license soon)

Hermes + Leo + German AWQ = Germeo

Germeo-7B-AWQ

A German-English understanding, but German-only speaking model merged from Hermeo-7B.

Model details

Quantization Procedure and Use Case:

The speciality of this model is that it solely replies in German, independently from the system message or prompt. Within the AWQ-process I introduced OpenSchnabeltier as calibration data for the model to stress the importance of German Tokens.

Usage

Setup in autoawq

# setup [autoawq](https://github.com/casper-hansen/AutoAWQ)
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

quant_path = "aari1995/germeo-7b-awq"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)

Setup in transformers (works in colab)

# pip install [autoawq](https://github.com/casper-hansen/AutoAWQ) and pip install --upgrade transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

quant_path = "aari1995/germeo-7b-awq"

# Load model
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)

Inference:

streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """<|im_start|>system
Du bist ein hilfreicher Assistent.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""

prompt = "Schreibe eine Stellenanzeige für Data Scientist bei AXA!"

tokens = tokenizer(
    prompt_template.format(prompt=prompt), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=1012
)
# tokenizer.decode(generation_output.flatten())

FAQ

The model continues after the reply with user inputs:

To solve this, you need to implement a custom stopping criteria:

from transformers import StoppingCriteria
class GermeoStoppingCriteria(StoppingCriteria):
  def __init__(self, target_sequence, prompt):
      self.target_sequence = target_sequence
      self.prompt=prompt

  def __call__(self, input_ids, scores, **kwargs):
      # Get the generated text as a string
      generated_text = tokenizer.decode(input_ids[0])
      generated_text = generated_text.replace(self.prompt,'')
      # Check if the target sequence appears in the generated text
      if self.target_sequence in generated_text:
          return True  # Stop generation

      return False  # Continue generation

  def __len__(self):
      return 1

  def __iter__(self):
      yield self

This then expects your input prompt (formatted as given into the model), and a stopping criteria, in this case the im_end token. Simply add it to the generation:

generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=1012,
    stopping_criteria=GermeoStoppingCriteria("<|im_end|>", prompt_template.format(prompt=prompt))
)

Acknowledgements and Special Thanks

Evaluation and Benchmarks (German only)

German benchmarks

German tasks: MMLU-DE Hellaswag-DE ARC-DE Average
Models / Few-shots: (5 shots) (10 shots) (24 shots)
7B parameters
llama-2-7b 0.400 0.513 0.381 0.431
leo-hessianai-7b 0.400 0.609 0.429 0.479
bloom-6b4-clp-german 0.274 0.550 0.351 0.392
mistral-7b 0.524 0.588 0.473 0.528
leo-mistral-hessianai-7b 0.481 0.663 0.485 0.543
leo-mistral-hessianai-7b-chat 0.458 0.617 0.465 0.513
DPOpenHermes-7B-v2 0.517 0.603 0.515 0.545
hermeo-7b 0.511 0.668 0.528 0.569
germeo-7b-awq (this model) 0.522 0.651 0.514 0.563
13B parameters
llama-2-13b 0.469 0.581 0.468 0.506
leo-hessianai-13b 0.486 0.658 0.509 0.551
70B parameters
llama-2-70b 0.597 0.674 0.561 0.611
leo-hessianai-70b 0.653 0.721 0.600 0.658

German reply rate benchmark

The fraction of German reply rates according to this benchmark

Models: German Response Rate
hermeo-7b tba
germeo-7b-awq (this model) tba

Additional Benchmarks:

TruthfulQA-DE: 0.508

Downloads last month
727
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including aari1995/germeo-7b-awq