zephyr-7b-dpo-qlora
This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the updated and the original datasets. It achieves the following results on the evaluation set:
- Loss: 0.5735
- Rewards/chosen: -0.6770
- Rewards/rejected: -1.1070
- Rewards/accuracies: 0.6940
- Rewards/margins: 0.4300
- Logps/rejected: -351.8942
- Logps/chosen: -331.1508
- Logits/rejected: -1.4599
- Logits/chosen: -1.7015
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6269 | 0.32 | 100 | 0.6269 | -0.2377 | -0.4431 | 0.6820 | 0.2054 | -285.4985 | -287.2169 | -2.2566 | -2.3666 |
0.6332 | 0.64 | 200 | 0.5821 | -0.5909 | -0.9588 | 0.7060 | 0.3679 | -337.0687 | -322.5442 | -1.6871 | -1.8938 |
0.5648 | 0.96 | 300 | 0.5735 | -0.6770 | -1.1070 | 0.6940 | 0.4300 | -351.8942 | -331.1508 | -1.4599 | -1.7015 |
Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.2.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
- Downloads last month
- 2
Model tree for YYYYYYibo/zephyr-7b-dpo-qlora
Base model
mistralai/Mistral-7B-v0.1