See axolotl config
axolotl version: 0.8.0.dev0
base_model: Qwen/Qwen2.5-3B-Instruct
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: VinitT/Cricket-Commentary-Sample
type: alpaca
dataset_prepared_path:
val_set_size: 0
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
hub_model_id: Commentary-qwen-3B
wandb_project: Cricket-Commentary-1
wandb_entity:
wandb_watch: all
wandb_name: Cricket-Commentary-1
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
cosine_min_lr_ratio: 0.2
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: false
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
#gpu_memory_limit: 20GiB
#lora_on_cpu: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
Commentary-qwen-3B
This model is a fine-tuned version of Qwen/Qwen2.5-3B-Instruct on the VinitT/Cricket-Commentary-Sample dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- total_eval_batch_size: 4
- optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.