Edit model card

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)

StableBeluga2 - GGML


This repo contains GGML format model files for Stability AI's StableBeluga2.

Important note regarding GGML files.

The GGML format has now been superseded by GGUF. As of August 21st 2023, llama.cpp no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.

Please use the GGUF models instead.

About GGML

GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:

  • llama.cpp, commit e76d630 and later.
  • text-generation-webui, the most widely used web UI.
  • KoboldCpp, version 1.37 and later. A powerful GGML web UI, especially good for story telling.
  • LM Studio, a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
  • llama-cpp-python, version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
  • ctransformers, version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.

Repositories available

Prompt template: Orca-Hashes

### System:

### User:

### Assistant:


Works with llama.cpp commit e76d630 until August 21st, 2023

Will not work with llama.cpp after commit dadbed99e65252d79f81101a392d0d6497b86caa.

For compatibility with latest llama.cpp, please use GGUF files instead.

Or one of the other tools and libraries listed above.

To use in llama.cpp, you must add -gqa 8 argument.

For other UIs and libraries, please check the docs.

Explanation of the new k-quant methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
stablebeluga2-70b.ggmlv3.q2_K.bin q2_K 2 28.59 GB 31.09 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
stablebeluga2-70b.ggmlv3.q3_K_S.bin q3_K_S 3 29.75 GB 32.25 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
stablebeluga2-70b.ggmlv3.q3_K_M.bin q3_K_M 3 33.04 GB 35.54 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
stablebeluga2-70b.ggmlv3.q3_K_L.bin q3_K_L 3 36.15 GB 38.65 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
stablebeluga2-70b.ggmlv3.q4_0.bin q4_0 4 38.87 GB 41.37 GB Original quant method, 4-bit.
stablebeluga2-70b.ggmlv3.q4_K_S.bin q4_K_S 4 38.87 GB 41.37 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
stablebeluga2-70b.ggmlv3.q4_K_M.bin q4_K_M 4 41.38 GB 43.88 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
stablebeluga2-70b.ggmlv3.q4_1.bin q4_1 4 43.17 GB 45.67 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
stablebeluga2-70b.ggmlv3.q5_0.bin q5_0 5 47.46 GB 49.96 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
stablebeluga2-70b.ggmlv3.q5_K_S.bin q5_K_S 5 47.46 GB 49.96 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
stablebeluga2-70b.ggmlv3.q5_K_M.bin q5_K_M 5 48.75 GB 51.25 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

Make sure you are using llama.cpp from commit dadbed99e65252d79f81101a392d0d6497b86caa or earlier.

For compatibility with latest llama.cpp, please use GGUF files instead.

I use the following command line; adjust for your tastes and needs:

./main -t 10 -ngl 40 -gqa 8 -m stablebeluga2-70B.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### System:\nYou are a story writing assistant.\n\n### User:\nWrite a story about llamas\n\n### Assistant:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8. If you are fully offloading the model to GPU, use -t 1

Change -ngl 40 to the number of GPU layers you have VRAM for. Use -ngl 100 to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

Remember the -gqa 8 argument, required for Llama 70B models.

Change -c 4096 to the desired sequence length for this model. For models that use RoPE, add --rope-freq-base 10000 --rope-freq-scale 0.5 for doubled context, or --rope-freq-base 10000 --rope-freq-scale 0.25 for 4x context.

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp-models.md.


For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Stability AI's StableBeluga2

Stable Beluga 2

Use Stable Chat (Research Preview) to test Stability AI's best language models for free

Model Description

Stable Beluga 2 is a Llama2 70B model finetuned on an Orca style Dataset


Start chatting with Stable Beluga 2 using the following code snippet:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

tokenizer = AutoTokenizer.from_pretrained("stabilityai/StableBeluga2", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("stabilityai/StableBeluga2", torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
system_prompt = "### System:\nYou are Stable Beluga, an AI that follows instructions extremely well. Help as much as you can. Remember, be safe, and don't do anything illegal.\n\n"

message = "Write me a poem please"
prompt = f"{system_prompt}### User: {message}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=256)

print(tokenizer.decode(output[0], skip_special_tokens=True))

Stable Beluga 2 should be used with this prompt format:

### System:
This is a system prompt, please behave and help the user.

### User:
Your prompt here

### Assistant:
The output of Stable Beluga 2

Other Beluga Models

StableBeluga 1 - Delta
StableBeluga 13B
StableBeluga 7B

Model Details

Training Dataset

Stable Beluga 2 is trained on our internal Orca-style dataset

Training Procedure

Models are learned via supervised fine-tuning on the aforementioned datasets, trained in mixed-precision (BF16), and optimized with AdamW. We outline the following hyperparameters:

Dataset Batch Size Learning Rate Learning Rate Decay Warm-up Weight Decay Betas
Orca pt1 packed 256 3e-5 Cosine to 3e-6 100 1e-6 (0.9, 0.95)
Orca pt2 unpacked 512 3e-5 Cosine to 3e-6 100 1e-6 (0.9, 0.95)

Ethical Considerations and Limitations

Beluga is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Beluga's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Beluga, developers should perform safety testing and tuning tailored to their specific applications of the model.

How to cite

      title={Stable Beluga models}, 
      author={Mahan, Dakota and Carlow, Ryan and Castricato, Louis and Cooper, Nathan and Laforte, Christian}


      title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, 
      author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
Downloads last month
Inference API has been turned off for this model.

Finetuned from

Space using TheBloke/StableBeluga2-70B-GGML 1