Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Orca 2 7B - AWQ

Description

This repo contains AWQ model files for Microsoft's Orca 2 7B.

These files were quantised using hardware kindly provided by Massed Compute.

About AWQ

AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.

It is supported by:

Repositories available

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Provided files, and AWQ parameters

I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.

Models are released as sharded safetensors files.

Branch Bits GS AWQ Dataset Seq Len Size
main 4 128 c4 4096 3.89 GB

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.
  2. Under Download custom model or LoRA, enter TheBloke/Orca-2-7B-AWQ.
  3. Click Download.
  4. The model will start downloading. Once it's finished it will say "Done".
  5. In the top left, click the refresh icon next to Model.
  6. In the Model dropdown, choose the model you just downloaded: Orca-2-7B-AWQ
  7. Select Loader: AutoAWQ.
  8. Click Load, and the model will load and is now ready for use.
  9. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
  10. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Multi-user inference server: vLLM

Documentation on installing and using vLLM can be found here.

  • Please ensure you are using vLLM version 0.2 or later.
  • When using vLLM as a server, pass the --quantization awq parameter.

For example:

python3 -m vllm.entrypoints.api_server --model TheBloke/Orca-2-7B-AWQ --quantization awq --dtype auto
  • When using vLLM from Python code, again set quantization=awq.

For example:

from vllm import LLM, SamplingParams

prompts = [
    "Tell me about AI",
    "Write a story about llamas",
    "What is 291 - 150?",
    "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]

sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

llm = LLM(model="TheBloke/Orca-2-7B-AWQ", quantization="awq", dtype="auto")

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Multi-user inference server: Hugging Face Text Generation Inference (TGI)

Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/Orca-2-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: ", response)

Inference from Python code using Transformers

Install the necessary packages

pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"

Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.

If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:

pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl

If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:

pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .

Transformers example code (requires Transformers 4.35.0 and later)

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

model_name_or_path = "TheBloke/Orca-2-7B-AWQ"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
    model_name_or_path,
    low_cpu_mem_usage=True,
    device_map="cuda:0"
)

# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

# Convert prompt to tokens
tokens = tokenizer(
    prompt_template,
    return_tensors='pt'
).input_ids.cuda()

generation_params = {
    "do_sample": True,
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 40,
    "max_new_tokens": 512,
    "repetition_penalty": 1.1
}

# Generate streamed output, visible one token at a time
generation_output = model.generate(
    tokens,
    streamer=streamer,
    **generation_params
)

# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
    tokens,
    **generation_params
)

# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)

# Inference is also possible via Transformers' pipeline
from transformers import pipeline

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    **generation_params
)

pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)

Compatibility

The files provided are tested to work with:

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Microsoft's Orca 2 7B

Orca 2

Orca 2 is a helpful assistant that is built for research purposes only and provides a single turn response in tasks such as reasoning over user given data, reading comprehension, math problem solving and text summarization. The model is designed to excel particularly in reasoning.

We open-source Orca 2 to encourage further research on the development, evaluation, and alignment of smaller LMs.

What is Orca 2’s intended use(s)?

  • Orca 2 is built for research purposes only.
  • The main purpose is to allow the research community to assess its abilities and to provide a foundation for building better frontier models.

How was Orca 2 evaluated?

  • Orca 2 has been evaluated on a large number of tasks ranging from reasoning to grounding and safety. Please refer to Section 6 and Appendix in the Orca 2 paper for details on evaluations.

Model Details

Orca 2 is a finetuned version of LLAMA-2. Orca 2’s training data is a synthetic dataset that was created to enhance the small model’s reasoning abilities. All synthetic training data was moderated using the Microsoft Azure content filters. More details about the model can be found in the Orca 2 paper.

Please refer to LLaMA-2 technical report for details on the model architecture.

License

Orca 2 is licensed under the Microsoft Research License.

Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

Bias, Risks, and Limitations

Orca 2, built upon the LLaMA 2 model family, retains many of its limitations, as well as the common limitations of other large language models or limitation caused by its training process, including:

Data Biases: Large language models, trained on extensive data, can inadvertently carry biases present in the source data. Consequently, the models may generate outputs that could be potentially biased or unfair.

Lack of Contextual Understanding: Despite their impressive capabilities in language understanding and generation, these models exhibit limited real-world understanding, resulting in potential inaccuracies or nonsensical responses.

Lack of Transparency: Due to the complexity and size, large language models can act as “black boxes”, making it difficult to comprehend the rationale behind specific outputs or decisions. We recommend reviewing transparency notes from Azure for more information.

Content Harms: There are various types of content harms that large language models can cause. It is important to be aware of them when using these models, and to take actions to prevent them. It is recommended to leverage various content moderation services provided by different companies and institutions. On an important note, we hope for better regulations and standards from government and technology leaders around content harms for AI technologies in future. We value and acknowledge the important role that research and open source community can play in this direction.

Hallucination: It is important to be aware and cautious not to entirely rely on a given language model for critical decisions or information that might have deep impact as it is not obvious how to prevent these models from fabricating content. Moreover, it is not clear whether small models may be more susceptible to hallucination in ungrounded generation use cases due to their smaller sizes and hence reduced memorization capacities. This is an active research topic and we hope there will be more rigorous measurement, understanding and mitigations around this topic.

Potential for Misuse: Without suitable safeguards, there is a risk that these models could be maliciously used for generating disinformation or harmful content.

Data Distribution: Orca 2’s performance is likely to correlate strongly with the distribution of the tuning data. This correlation might limit its accuracy in areas underrepresented in the training dataset such as math, coding, and reasoning.

System messages: Orca 2 demonstrates variance in performance depending on the system instructions. Additionally, the stochasticity introduced by the model size may lead to generation of non-deterministic responses to different system instructions.

Zero-Shot Settings: Orca 2 was trained on data that mostly simulate zero-shot settings. While the model demonstrate very strong performance in zero-shot settings, it does not show the same gains of using few-shot learning compared to other, specially larger, models.

Synthetic data: As Orca 2 is trained on synthetic data, it could inherit both the advantages and shortcomings of the models and methods used for data generation. We posit that Orca 2 benefits from the safety measures incorporated during training and safety guardrails (e.g., content filter) within the Azure OpenAI API. However, detailed studies are required for better quantification of such risks.

This model is solely designed for research settings, and its testing has only been carried out in such environments. It should not be used in downstream applications, as additional analysis is needed to assess potential harm or bias in the proposed application.

Getting started with Orca 2

Inference with Hugging Face library

import torch
import transformers

if torch.cuda.is_available():
    torch.set_default_device("cuda")
else:
    torch.set_default_device("cpu")
    
model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Orca-2-7b", device_map='auto')

# https://github.com/huggingface/transformers/issues/27132
# please use the slow tokenizer since fast and slow tokenizer produces different tokens
tokenizer = transformers.AutoTokenizer.from_pretrained(
        "microsoft/Orca-2-7b",
        use_fast=False,
    )

system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
user_message = "How can you determine if a restaurant is popular among locals or mainly attracts tourists, and why might this information be useful?"

prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"

inputs = tokenizer(prompt, return_tensors='pt')
output_ids = model.generate(inputs["input_ids"],)
answer = tokenizer.batch_decode(output_ids)[0]

print(answer)

# This example continues showing how to add a second turn message by the user to the conversation
second_turn_user_message = "Give me a list of the key points of your first answer."

# we set add_special_tokens=False because we dont want to automatically add a bos_token between messages
second_turn_message_in_markup = f"\n<|im_start|>user\n{second_turn_user_message}<|im_end|>\n<|im_start|>assistant"
second_turn_tokens = tokenizer(second_turn_message_in_markup, return_tensors='pt', add_special_tokens=False)
second_turn_input = torch.cat([output_ids, second_turn_tokens['input_ids']], dim=1)

output_ids_2 = model.generate(second_turn_input,)
second_turn_answer = tokenizer.batch_decode(output_ids_2)[0]

print(second_turn_answer)

Safe inference with Azure AI Content Safety

The usage of Azure AI Content Safety on top of model prediction is strongly encouraged and can help preventing some of content harms. Azure AI Content Safety is a content moderation platform that uses AI to moderate content. By having Azure AI Content Safety on the output of Orca 2, the model output can be moderated by scanning it for different harm categories including sexual content, violence, hate, and self-harm with multiple severity levels and multi-lingual detection.

import os
import math
import transformers
import torch

from azure.ai.contentsafety import ContentSafetyClient
from azure.core.credentials import AzureKeyCredential
from azure.core.exceptions import HttpResponseError
from azure.ai.contentsafety.models import AnalyzeTextOptions

CONTENT_SAFETY_KEY = os.environ["CONTENT_SAFETY_KEY"]
CONTENT_SAFETY_ENDPOINT = os.environ["CONTENT_SAFETY_ENDPOINT"]

# We use Azure AI Content Safety to filter out any content that reaches "Medium" threshold
# For more information: https://learn.microsoft.com/en-us/azure/ai-services/content-safety/
def should_filter_out(input_text, threshold=4):
    # Create an Content Safety client
    client = ContentSafetyClient(CONTENT_SAFETY_ENDPOINT, AzureKeyCredential(CONTENT_SAFETY_KEY))

    # Construct a request
    request = AnalyzeTextOptions(text=input_text)

    # Analyze text
    try:
        response = client.analyze_text(request)
    except HttpResponseError as e:
        print("Analyze text failed.")
        if e.error:
            print(f"Error code: {e.error.code}")
            print(f"Error message: {e.error.message}")
            raise
        print(e)
        raise

    categories = ["hate_result", "self_harm_result", "sexual_result", "violence_result"]
    max_score = -math.inf
    for category in categories:
        max_score = max(max_score, getattr(response, category).severity)

    return max_score >= threshold

model_path = 'microsoft/Orca-2-7b'
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = transformers.AutoModelForCausalLM.from_pretrained(model_path)
model.to(device)

tokenizer = transformers.AutoTokenizer.from_pretrained(
    model_path,
    model_max_length=4096,
    padding_side="right",
    use_fast=False,
    add_special_tokens=False,
)

system_message = "You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."
user_message = "\" \n :You can't just say, \"\"that's crap\"\" and remove it without gaining a consensus. You already know this, based on your block history. —/ \" \nIs the comment obscene? \nOptions : Yes, No."

prompt =  f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{user_message}<|im_end|>\n<|im_start|>assistant"

inputs = tokenizer(prompt, return_tensors='pt')
inputs = inputs.to(device)

output_ids = model.generate(inputs["input_ids"], max_length=4096, do_sample=False, temperature=0.0, use_cache=True)
sequence_length = inputs["input_ids"].shape[1]
new_output_ids = output_ids[:, sequence_length:]
answers = tokenizer.batch_decode(new_output_ids, skip_special_tokens=True)
final_output = answers[0] if not should_filter_out(answers[0]) else "[Content Filtered]"

print(final_output)

Citation

@misc{mitra2023orca,
      title={Orca 2: Teaching Small Language Models How to Reason}, 
      author={Arindam Mitra and Luciano Del Corro and Shweti Mahajan and Andres Codas and Clarisse Simoes and Sahaj Agrawal and Xuxi Chen and Anastasia Razdaibiedina and Erik Jones and Kriti Aggarwal and Hamid Palangi and Guoqing Zheng and Corby Rosset and Hamed Khanpour and Ahmed Awadallah},
      year={2023},
      eprint={2311.11045},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
Downloads last month
430
Safetensors
Model size
1.13B params
Tensor type
I32
·
FP16
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Quantized from