TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Llama 2 13B Chat Dutch - GPTQ
- Model creator: Bram Vanroy
- Original model: Llama 2 13B Chat Dutch
Description
This repo contains GPTQ model files for Bram Vanroy's Llama 2 13B Chat Dutch.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- Bram Vanroy's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: Llama-2-Chat
[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
{prompt}[/INST]
Licensing
The creator of the source model has listed its license as cc-by-nc-sa-4.0
, and this quantization has therefore used that same license.
As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: Bram Vanroy's Llama 2 13B Chat Dutch.
Provided files and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the main
branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | No | 0.1 | Dolly 15K Dutch | 4096 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | Dolly 15K Dutch | 4096 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | Dolly 15K Dutch | 4096 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | Dolly 15K Dutch | 4096 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | Dolly 15K Dutch | 4096 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | Dolly 15K Dutch | 4096 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
How to download from branches
- In text-generation-webui, you can add
:branch
to the end of the download name, egTheBloke/Llama-2-13B-Chat-Dutch-GPTQ:main
- With Git, you can clone a branch with:
git clone --single-branch --branch main https://huggingface.co/TheBloke/Llama-2-13B-Chat-Dutch-GPTQ
- In Python Transformers code, the branch is the
revision
parameter; see below.
How to easily download and use this model in text-generation-webui.
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/Llama-2-13B-Chat-Dutch-GPTQ
.
- To download from a specific branch, enter for example
TheBloke/Llama-2-13B-Chat-Dutch-GPTQ:main
- see Provided Files above for the list of branches for each option.
- Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
Llama-2-13B-Chat-Dutch-GPTQ
- The model will automatically load, and is now ready for use!
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers>=4.32.0 optimum>=1.12.0
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
pip3 install .
For CodeLlama models only: you must use Transformers 4.33.0 or later.
If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
pip3 uninstall -y transformers
pip3 install git+https://github.com/huggingface/transformers.git
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Llama-2-13B-Chat-Dutch-GPTQ"
# To use a different branch, change revision
# For example: revision="main"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=False,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''[INST] <<SYS>>
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
<</SYS>>
{prompt}[/INST]
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with Occ4m's GPTQ-for-LLaMa fork.
ExLlama is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
Huggingface Text Generation Inference (TGI) is compatible with all GPTQ models.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Bram Vanroy's Llama 2 13B Chat Dutch
Llama-2-13b-chat-dutch
This model is a fine-tuned version of BramVanroy/llama2-13b-ft-mc4_nl_cleaned_tiny on the BramVanroy/dutch_chat_datasets dataset on a context of 4096 tokens. See the original meta-llama/Llama-2-13b-hf for more information, intended use, and biases.
If you use this model or refer to it, please use the following citation:
Bram Vanroy. (2023). Llama v2 13b: Finetuned on Dutch Conversational Data. Hugging Face. https://doi.org/10.57967/HF/1018
@misc{https://doi.org/10.57967/hf/1018,
doi = {10.57967/HF/1018},
url = {https://huggingface.co/BramVanroy/Llama-2-13b-chat-dutch},
author = {{Bram Vanroy}},
title = {{Llama} v2 13b: {Finetuned} on {Dutch} Conversational Data},
publisher = {{Hugging} {Face}},
year = {2023}
}
Model description
I could not get the original Llama 2 13B to produce much Dutch, even though the description paper indicates that it was trained on a (small) portion of Dutch data. I therefore continued training the original Llama 2 13B checkpoint on Dutch data in regular CLM. In a second step I finetuned that model on a collection of synthetic (translated) instruction and chat datasets that I have collected. See their pages for licensing, usage, creation, and citation information.
- https://huggingface.co/datasets/BramVanroy/dolly-15k-dutch
- https://huggingface.co/datasets/BramVanroy/alpaca-cleaned-dutch-baize
- https://huggingface.co/datasets/BramVanroy/stackoverflow-chat-dutch
- https://huggingface.co/datasets/BramVanroy/quora-chat-dutch
This model is the result of that process. While not perfect by any means, it can perform reasonably well in Dutch depending on the prompts. It is also decent at helping with programming tasks.
Intended uses & limitations
Depending on the prompt, the model can return good results considering that it is only 13B in size and was only marginally pretrained on Dutch. That being said, the model was not trained on human feedback and contains no safe-guards so it may produce unexpected and even offensive content depending on the query. The only attempt of a safe-guard is the default prompt that it was trained on, which was
Je bent een behulpzame, respectvolle en eerlijke assistent. Antwoord altijd zo behulpzaam mogelijk. Je antwoorden mogen geen schadelijke, onethische, racistische, seksistische, gevaarlijke of illegale inhoud bevatten. Zorg ervoor dat je antwoorden sociaal onbevooroordeeld en positief van aard zijn.\n\nAls een vraag nergens op slaat of feitelijk niet coherent is, leg dan uit waarom in plaats van iets niet correct te antwoorden. Als je het antwoord op een vraag niet weet, deel dan geen onjuiste informatie.\
Use with caution and at your own risk!
Because the model was trained on synthetic data, translated with OpenAI's API, you cannot use this model to create a competitive product to theirs.
Training procedure
Trained with 4096 tokens context length. The dataset was preprocessed so that as many as possible dialogs were put in a single batch, without disrupting dialogs. In other words, a dialog was never split up over different sequences or batches. During training, the human prompts were ignored in back propagation.
Trained with LoRA targetting ["q_proj", "v_proj"] in 4 bit and merged before upload. Trained with Flash Attention as borrowed from here.
The adapters are in the adapters
branch.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0193 | 0.09 | 20 | 1.1583 |
0.9743 | 0.17 | 40 | 1.1339 |
0.9159 | 0.26 | 60 | 1.1218 |
0.9131 | 0.35 | 80 | 1.1153 |
0.8816 | 0.44 | 100 | 1.1130 |
0.8977 | 0.52 | 120 | 1.1069 |
0.9061 | 0.61 | 140 | 1.1025 |
0.8672 | 0.7 | 160 | 1.1024 |
0.8956 | 0.79 | 180 | 1.0971 |
0.8514 | 0.87 | 200 | 1.0995 |
0.8357 | 0.96 | 220 | 1.0952 |
0.8294 | 1.05 | 240 | 1.0964 |
0.8531 | 1.13 | 260 | 1.0947 |
0.8321 | 1.22 | 280 | 1.0951 |
0.8365 | 1.31 | 300 | 1.0910 |
0.8616 | 1.4 | 320 | 1.0894 |
0.8397 | 1.48 | 340 | 1.0904 |
0.861 | 1.57 | 360 | 1.0880 |
0.8116 | 1.66 | 380 | 1.0871 |
0.8285 | 1.74 | 400 | 1.0855 |
0.8603 | 1.83 | 420 | 1.0856 |
0.8126 | 1.92 | 440 | 1.0848 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 18
Model tree for TheBloke/Llama-2-13B-Chat-Dutch-GPTQ
Base model
BramVanroy/Llama-2-13b-chat-dutch