Edit model card
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Astrid Mistral 7B - GPTQ

Description

This repo contains GPTQ model files for PAIX's Astrid Mistral 7B.

Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.

These files were quantised using hardware kindly provided by Massed Compute.

Repositories available

Prompt template: ChatML

<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Known compatible clients / servers

These GPTQ models are known to work in the following inference servers/webuis.

This may not be a complete list; if you know of others, please let me know!

Provided files, and GPTQ parameters

Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.

Each separate quant is in a different branch. See below for instructions on fetching from different branches.

Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.

Explanation of GPTQ parameters
  • Bits: The bit size of the quantised model.
  • GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
  • Act Order: True or False. Also known as desc_act. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
  • Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
  • GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
  • Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
  • ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch Bits GS Act Order Damp % GPTQ Dataset Seq Len Size ExLlama Desc
main 4 128 Yes 0.1 VMware Open Instruct 4096 4.16 GB Yes 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy.
gptq-4bit-32g-actorder_True 4 32 Yes 0.1 VMware Open Instruct 4096 4.57 GB Yes 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage.
gptq-8bit--1g-actorder_True 8 None Yes 0.1 VMware Open Instruct 4096 7.52 GB No 8-bit, with Act Order. No group size, to lower VRAM requirements.
gptq-8bit-128g-actorder_True 8 128 Yes 0.1 VMware Open Instruct 4096 7.68 GB No 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy.
gptq-8bit-32g-actorder_True 8 32 Yes 0.1 VMware Open Instruct 4096 8.17 GB No 8-bit, with group size 32g and Act Order for maximum inference quality.
gptq-4bit-64g-actorder_True 4 64 Yes 0.1 VMware Open Instruct 4096 4.30 GB Yes 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy.

How to download, including from branches

In text-generation-webui

To download from the main branch, enter TheBloke/Astrid-Mistral-7B-GPTQ in the "Download model" box.

To download from another branch, add :branchname to the end of the download name, eg TheBloke/Astrid-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True

From the command line

I recommend using the huggingface-hub Python library:

pip3 install huggingface-hub

To download the main branch to a folder called Astrid-Mistral-7B-GPTQ:

mkdir Astrid-Mistral-7B-GPTQ
huggingface-cli download TheBloke/Astrid-Mistral-7B-GPTQ --local-dir Astrid-Mistral-7B-GPTQ --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

mkdir Astrid-Mistral-7B-GPTQ
huggingface-cli download TheBloke/Astrid-Mistral-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Astrid-Mistral-7B-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage

If you remove the --local-dir-use-symlinks False parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface), and symlinks will be added to the specified --local-dir, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.

The cache location can be changed with the HF_HOME environment variable, and/or the --cache-dir parameter to huggingface-cli.

For more documentation on downloading with huggingface-cli, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.

To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer:

pip3 install hf_transfer

And set environment variable HF_HUB_ENABLE_HF_TRANSFER to 1:

mkdir Astrid-Mistral-7B-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Astrid-Mistral-7B-GPTQ --local-dir Astrid-Mistral-7B-GPTQ --local-dir-use-symlinks False

Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1 before the download command.

With git (not recommended)

To clone a specific branch with git, use a command like this:

git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Astrid-Mistral-7B-GPTQ

Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git folder as a blob.)

How to easily download and use this model in text-generation-webui

Please make sure you're using the latest version of text-generation-webui.

It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.

  1. Click the Model tab.

  2. Under Download custom model or LoRA, enter TheBloke/Astrid-Mistral-7B-GPTQ.

    • To download from a specific branch, enter for example TheBloke/Astrid-Mistral-7B-GPTQ:gptq-4bit-32g-actorder_True
    • see Provided Files above for the list of branches for each option.
  3. Click Download.

  4. The model will start downloading. Once it's finished it will say "Done".

  5. In the top left, click the refresh icon next to Model.

  6. In the Model dropdown, choose the model you just downloaded: Astrid-Mistral-7B-GPTQ

  7. The model will automatically load, and is now ready for use!

  8. If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.

    • Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file quantize_config.json.
  9. Once you're ready, click the Text Generation tab and enter a prompt to get started!

Serving this model from Text Generation Inference (TGI)

It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0

Example Docker parameters:

--model-id TheBloke/Astrid-Mistral-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096

Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):

pip3 install huggingface-hub
from huggingface_hub import InferenceClient

endpoint_url = "https://your-endpoint-url-here"

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
                                  max_new_tokens=128,
                                  do_sample=True,
                                  temperature=0.7,
                                  top_p=0.95,
                                  top_k=40,
                                  repetition_penalty=1.1)

print(f"Model output: {response}")

Python code example: inference from this GPTQ model

Install the necessary packages

Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.

pip3 install --upgrade transformers optimum
# If using PyTorch 2.1 + CUDA 12.x:
pip3 install --upgrade auto-gptq
# or, if using PyTorch 2.1 + CUDA 11.x:
pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/

If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:

pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.5.1
pip3 install .

Example Python code

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name_or_path = "TheBloke/Astrid-Mistral-7B-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             trust_remote_code=False,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)

prompt = "Tell me about AI"
prompt_template=f'''<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'''

print("\n\n*** Generate:")

input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))

# Inference can also be done using transformers' pipeline

print("*** Pipeline:")
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    max_new_tokens=512,
    do_sample=True,
    temperature=0.7,
    top_p=0.95,
    top_k=40,
    repetition_penalty=1.1
)

print(pipe(prompt_template)[0]['generated_text'])

Compatibility

The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.

ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.

For a list of clients/servers, please see "Known compatible clients / servers", above.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute

Thanks to the chirper.ai team!

Thanks to Clay from gpus.llm-utils.org!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: PAIX's Astrid Mistral 7B

Model Card

Summary

This model, Astrid-7B-Assistant is a Mistral-7B base model for causal language modeling, designed to generate human-like text.
It's part of our mission to make AI technology accessible to everyone, focusing on personalization, data privacy, and transparent AI governance. Trained in English, it's a versatile tool for a variety of applications. This model is one of the many models available on our platform, and we currently have a 1B and 7B open-source model.

This model was trained by PAIX.Cloud.

Usage

To use the model with the transformers library on a machine with GPUs, first make sure you have the transformers library installed.

pip install transformers==4.34.0

Also make sure you are providing your huggingface token to the pipeline if the model is lying in a private repo. - Either leave token=True in the pipeline and login to hugginface_hub by running python import huggingface_hub huggingface_hub.login(<ACCES_TOKEN>) - Or directly pass your to token in the pipeline

from transformers import pipeline

generate_text = pipeline(
    model="PAIXAI/Astrid-Mistral-7B",
    torch_dtype="auto",
    trust_remote_code=True,
    use_fast=True,
    device_map={"": "cuda:0"},
    token=True,
)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=256,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])

You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:

print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
<|prompt|>Why is drinking water so healthy?<|im_end|><|answer|>

Alternatively, you can download h2oai_pipeline.py, store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the transformers package, this will allow you to set trust_remote_code=False.

from h2oai_pipeline import H2OTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained(
    "PAIXAI/Astrid-Mistral-7B",
    use_fast=True,
    padding_side="left",
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    "PAIXAI/Astrid-Mistral-7B",
    torch_dtype="auto",
    device_map={"": "cuda:0"},
    trust_remote_code=True,
)
generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)

res = generate_text(
    "Why is drinking water so healthy?",
    min_new_tokens=2,
    max_new_tokens=256,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)
print(res[0]["generated_text"])

You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "PAIXAI/Astrid-Mistral-7B" # either local folder or huggingface model name
# Important: The prompt needs to be in the same format the model was trained with.
# You can find an example prompt in the experiment logs.
prompt = "<|prompt|>How are you?<|im_end|><|answer|>"

tokenizer = AutoTokenizer.from_pretrained(
    model_name,
    use_fast=True,
    trust_remote_code=True,
)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map={"": "cuda:0"},
    trust_remote_code=True,
)
model.cuda().eval()
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")

# generate configuration can be modified to your needs
tokens = model.generate(
    input_ids=inputs["input_ids"],
    attention_mask=inputs["attention_mask"],
    min_new_tokens=2,
    max_new_tokens=256,
    do_sample=False,
    num_beams=1,
    temperature=float(0.3),
    repetition_penalty=float(1.2),
    renormalize_logits=True
)[0]

tokens = tokens[inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(tokens, skip_special_tokens=True)
print(answer)

Quantization and sharding

You can load the models using quantization by specifying load_in_8bit=True or load_in_4bit=True. Also, sharding on multiple GPUs is possible by setting device_map=auto.

Model Architecture

MistralForCausalLM(
  (model): MistralModel(
    (embed_tokens): Embedding(32002, 4096, padding_idx=0)
    (layers): ModuleList(
      (0-31): 32 x MistralDecoderLayer(
        (self_attn): MistralAttention(
          (q_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (k_proj): Linear(in_features=4096, out_features=1024, bias=False)
          (v_proj): Linear(in_features=4096, out_features=1024, bias=False)
          (o_proj): Linear(in_features=4096, out_features=4096, bias=False)
          (rotary_emb): MistralRotaryEmbedding()
        )
        (mlp): MistralMLP(
          (gate_proj): Linear(in_features=4096, out_features=14336, bias=False)
          (up_proj): Linear(in_features=4096, out_features=14336, bias=False)
          (down_proj): Linear(in_features=14336, out_features=4096, bias=False)
          (act_fn): SiLUActivation()
        )
        (input_layernorm): MistralRMSNorm()
        (post_attention_layernorm): MistralRMSNorm()
      )
    )
    (norm): MistralRMSNorm()
  )
  (lm_head): Linear(in_features=4096, out_features=32002, bias=False)
)

Model Configuration

This model was trained using H2O LLM Studio and with the configuration in cfg.yaml. Visit H2O LLM Studio to learn how to train your own large language models.

Disclaimer

Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.

  • Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
  • Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
  • Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
  • Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
  • Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
  • Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.

By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.

Downloads last month
7
Safetensors
Model size
1.2B params
Tensor type
I32
·
FP16
·
Inference API (serverless) has been turned off for this model.

Quantized from