Baseline Model trained on diabetespmxrsn1x to apply classification on diabetes

Metrics of the best model:

accuracy 0.871795

average_precision 0.518856

roc_auc 0.883333

recall_macro 0.883333

f1_macro 0.801996

Name: DecisionTreeClassifier(class_weight='balanced', max_depth=1), dtype: float64

See model plot below:

Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=                 continuous  dirty_float  ...  free_string  useless

cholesterol True False ... False False glucose True False ... False False hdl_chol True False ... False False chol_hdl_ratio False False ... True False age True False ... False False gender False False ... False False height False False ... False False weight True False ... False False bmi False False ... True False systolic_bp True False ... False False diastolic_bp True False ... False False waist False False ... False False hip False False ... False False waist_hip_ratio False False ... False False[14 rows x 7 columns])),('decisiontreeclassifier',DecisionTreeClassifier(class_weight='balanced', max_depth=1))])

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Disclaimer: This model is trained with dabl library as a baseline, for better results, use AutoTrain.

Logs of training including the models tried in the process can be found in logs.txt

Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.