Edit model card

Hunyuan-DiT : A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

This repo contains PyTorch model definitions, pre-trained weights and inference/sampling code for our paper exploring Hunyuan-DiT. You can find more visualizations on our project page.

Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding

DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation

๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ News!!

  • Jun 13, 2024: :zap: HYDiT-v1.1 version is released, which mitigates the issue of image oversaturation and alleviates the watermark issue. Please check HunyuanDiT-v1.1 and Distillation-v1.1 for more details.
  • Jun 13, 2024: :truck: The training code is released, offering full-parameter training and LoRA training.
  • Jun 06, 2024: :tada: Hunyuan-DiT is now available in ComfyUI. Please check ComfyUI for more details.
  • Jun 06, 2024: ๐Ÿš€ We introduce Distillation version for Hunyuan-DiT acceleration, which achieves 50% acceleration on NVIDIA GPUs. Please check Distillation for more details.
  • Jun 05, 2024: ๐Ÿค— Hunyuan-DiT is now available in ๐Ÿค— Diffusers! Please check the example below.
  • Jun 04, 2024: :globe_with_meridians: Support Tencent Cloud links to download the pretrained models! Please check the links below.
  • May 22, 2024: ๐Ÿš€ We introduce TensorRT version for Hunyuan-DiT acceleration, which achieves 47% acceleration on NVIDIA GPUs. Please check TensorRT-libs for instructions.
  • May 22, 2024: ๐Ÿ’ฌ We support demo running multi-turn text2image generation now. Please check the script below.

๐Ÿค– Try it on the web

Welcome to our web-based Tencent Hunyuan Bot, where you can explore our innovative products! Just input the suggested prompts below or any other imaginative prompts containing drawing-related keywords to activate the Hunyuan text-to-image generation feature. Unleash your creativity and create any picture you desire, all for free!

You can use simple prompts similar to natural language text


draw a pig in a suit


generate a painting, cyberpunk style, sports car

or multi-turn language interactions to create the picture.


draw a wooden bird


turn into glass

๐Ÿ“‘ Open-source Plan

  • Hunyuan-DiT (Text-to-Image Model)
    • Inference
    • Checkpoints
    • Distillation Version
    • TensorRT Version
    • Training
    • Lora
    • Controlnet (Pose, Canny, Depth, Tile)
    • IP-adapter
    • Hunyuan-DiT-XL checkpoints (0.7B model)
    • Caption model (Re-caption the raw image-text pairs)
  • DialogGen (Prompt Enhancement Model)
    • Inference
  • Web Demo (Gradio)
  • Multi-turn T2I Demo (Gradio)
  • Cli Demo
  • ComfyUI
  • Diffusers
  • WebUI



We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully designed the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-round multi-modal dialogue with users, generating and refining images according to the context. Through our carefully designed holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models.

๐ŸŽ‰ Hunyuan-DiT Key Features

Chinese-English Bilingual DiT Architecture

Hunyuan-DiT is a diffusion model in the latent space, as depicted in figure below. Following the Latent Diffusion Model, we use a pre-trained Variational Autoencoder (VAE) to compress the images into low-dimensional latent spaces and train a diffusion model to learn the data distribution with diffusion models. Our diffusion model is parameterized with a transformer. To encode the text prompts, we leverage a combination of pre-trained bilingual (English and Chinese) CLIP and multilingual T5 encoder.

Multi-turn Text2Image Generation

Understanding natural language instructions and performing multi-turn interaction with users are important for a text-to-image system. It can help build a dynamic and iterative creation process that bring the userโ€™s idea into reality step by step. In this section, we will detail how we empower Hunyuan-DiT with the ability to perform multi-round conversations and image generation. We train MLLM to understand the multi-round user dialogue and output the new text prompt for image generation.

๐Ÿ“ˆ Comparisons

In order to comprehensively compare the generation capabilities of HunyuanDiT and other models, we constructed a 4-dimensional test set, including Text-Image Consistency, Excluding AI Artifacts, Subject Clarity, Aesthetic. More than 50 professional evaluators performs the evaluation.

Model Open Source Text-Image Consistency (%) Excluding AI Artifacts (%) Subject Clarity (%) Aesthetics (%) Overall (%)
SDXL โœ” 64.3 60.6 91.1 76.3 42.7
PixArt-ฮฑ โœ” 68.3 60.9 93.2 77.5 45.5
Playground 2.5 โœ” 71.9 70.8 94.9 83.3 54.3
SD 3 โœ˜ 77.1 69.3 94.6 82.5 56.7
MidJourney v6โœ˜ 73.5 80.2 93.5 87.2 63.3
DALL-E 3โœ˜ 83.9 80.3 96.5 89.4 71.0
Hunyuan-DiTโœ” 74.2 74.3 95.4 86.6 59.0

๐ŸŽฅ Visualization

  • Chinese Elements

  • Long Text Input

  • Multi-turn Text2Image Generation

๐Ÿ“œ Requirements

This repo consists of DialogGen (a prompt enhancement model) and Hunyuan-DiT (a text-to-image model).

The following table shows the requirements for running the models (batch size = 1):

Model --load-4bit (DialogGen) GPU Peak Memory GPU
DialogGen + Hunyuan-DiT โœ˜ 32G A100
DialogGen + Hunyuan-DiT โœ” 22G A100
Hunyuan-DiT - 11G A100
Hunyuan-DiT - 14G RTX3090/RTX4090
  • An NVIDIA GPU with CUDA support is required.
    • We have tested V100 and A100 GPUs.
    • Minimum: The minimum GPU memory required is 11GB.
    • Recommended: We recommend using a GPU with 32GB of memory for better generation quality.
  • Tested operating system: Linux

๐Ÿ› ๏ธ Dependencies and Installation

Begin by cloning the repository:

git clone
cd HunyuanDiT

Installation Guide for Linux

We provide an environment.yml file for setting up a Conda environment. Conda's installation instructions are available here.

# 1. Prepare conda environment
conda env create -f environment.yml

# 2. Activate the environment
conda activate HunyuanDiT

# 3. Install pip dependencies
python -m pip install -r requirements.txt

# 4. (Optional) Install flash attention v2 for acceleration (requires CUDA 11.6 or above)
python -m pip install git+

๐Ÿงฑ Download Pretrained Models

To download the model, first install the huggingface-cli. (Detailed instructions are available here.)

python -m pip install "huggingface_hub[cli]"

Then download the model using the following commands:

# Create a directory named 'ckpts' where the model will be saved, fulfilling the prerequisites for running the demo.
mkdir ckpts
# Use the huggingface-cli tool to download the model.
# The download time may vary from 10 minutes to 1 hour depending on network conditions.
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
๐Ÿ’กTips for using huggingface-cli (network problem)
1. Using HF-Mirror

If you encounter slow download speeds in China, you can try a mirror to speed up the download process. For example,

HF_ENDPOINT= huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./ckpts
2. Resume Download

huggingface-cli supports resuming downloads. If the download is interrupted, you can just rerun the download command to resume the download process.

Note: If an No such file or directory: 'ckpts/.huggingface/.gitignore.lock' like error occurs during the download process, you can ignore the error and rerun the download command.

All models will be automatically downloaded. For more information about the model, visit the Hugging Face repository here.

Model #Params Huggingface Download URL Tencent Cloud Download URL
mT5 1.6B mT5 mT5
Tokenizer - Tokenizer Tokenizer
DialogGen 7.0B DialogGen DialogGen
sdxl-vae-fp16-fix 83M sdxl-vae-fp16-fix sdxl-vae-fp16-fix
Hunyuan-DiT 1.5B Hunyuan-DiT Hunyuan-DiT
Data demo - - Data demo

:truck: Training

Data Preparation

Refer to the commands below to prepare the training data.

  1. Install dependencies

    We offer an efficient data management library, named IndexKits, supporting the management of reading hundreds of millions of data during training, see more in docs.

    # 1 Install dependencies
    cd HunyuanDiT
    pip install -e ./IndexKits
  2. Data download

    Feel free to download the data demo.

    # 2 Data download
    wget -O ./dataset/
    unzip ./dataset/ -d ./dataset
    mkdir ./dataset/porcelain/arrows ./dataset/porcelain/jsons
  3. Data conversion

    Create a CSV file for training data with the fields listed in the table below.

    Fields Required Description Example
    image_path Required image path ./dataset/porcelain/images/0.png
    text_zh Required text ้’่Šฑ็“ท้ฃŽๆ ผ๏ผŒไธ€ๅช่“่‰ฒ็š„้ธŸๅ„ฟ็ซ™ๅœจ่“่‰ฒ็š„่Šฑ็“ถไธŠ๏ผŒๅ‘จๅ›ด็‚น็ผ€็€็™ฝ่‰ฒ่Šฑๆœต๏ผŒ่ƒŒๆ™ฏๆ˜ฏ็™ฝ่‰ฒ
    md5 Optional image md5 (Message Digest Algorithm 5) d41d8cd98f00b204e9800998ecf8427e
    width Optional image width 1024
    height Optional image height 1024

    โš ๏ธ Optional fields like MD5, width, and height can be omitted. If omitted, the script below will automatically calculate them. This process can be time-consuming when dealing with large-scale training data.

    We utilize Arrow for training data format, offering a standard and efficient in-memory data representation. A conversion script is provided to transform CSV files into Arrow format.

    # 3 Data conversion 
    python ./hydit/data_loader/ ./dataset/porcelain/csvfile/image_text.csv ./dataset/porcelain/arrows
  4. Data Selection and Configuration File Creation

    We configure the training data through YAML files. In these files, you can set up standard data processing strategies for filtering, copying, deduplicating, and more regarding the training data. For more details, see docs.

    For a sample file, please refer to file. For a full parameter configuration file, see file.

  5. Create training data index file using YAML file.

     # Single Resolution Data Preparation
     idk base -c dataset/yamls/porcelain.yaml -t dataset/porcelain/jsons/porcelain.json
     # Multi Resolution Data Preparation     
     idk multireso -c dataset/yamls/porcelain_mt.yaml -t dataset/porcelain/jsons/porcelain_mt.json

The directory structure for porcelain dataset is:

 cd ./dataset

    โ”œโ”€โ”€images/  (image files)
    โ”‚  โ”œโ”€โ”€0.png
    โ”‚  โ”œโ”€โ”€1.png
    โ”‚  โ”œโ”€โ”€......
    โ”œโ”€โ”€csvfile/  (csv files containing text-image pairs)
    โ”‚  โ”œโ”€โ”€image_text.csv
    โ”œโ”€โ”€arrows/  (arrow files containing all necessary training data)
    โ”‚  โ”œโ”€โ”€00000.arrow
    โ”‚  โ”œโ”€โ”€00001.arrow
    โ”‚  โ”œโ”€โ”€......
    โ”œโ”€โ”€jsons/  (final training data index files which read data from arrow files during training)
    โ”‚  โ”œโ”€โ”€porcelain.json
    โ”‚  โ”œโ”€โ”€porcelain_mt.json

Full-parameter Training

To leverage DeepSpeed in training, you have the flexibility to control single-node / multi-node training by adjusting parameters such as --hostfile and --master_addr. For more details, see link.

# Single Resolution Data Preparation
PYTHONPATH=./ sh hydit/ --index-file dataset/porcelain/jsons/porcelain.json

# Multi Resolution Data Preparation
PYTHONPATH=./ sh hydit/ --index-file dataset/porcelain/jsons/porcelain.json --multireso --reso-step 64


We provide training and inference scripts for LoRA, detailed in the guidances.

๐Ÿ”‘ Inference

Using Gradio

Make sure the conda environment is activated before running the following command.

# By default, we start a Chinese UI.
python app/

# Using Flash Attention for acceleration.
python app/ --infer-mode fa

# You can disable the enhancement model if the GPU memory is insufficient.
# The enhancement will be unavailable until you restart the app without the `--no-enhance` flag. 
python app/ --no-enhance

# Start with English UI
python app/ --lang en

# Start a multi-turn T2I generation UI. 
# If your GPU memory is less than 32GB, use '--load-4bit' to enable 4-bit quantization, which requires at least 22GB of memory.
python app/

Then the demo can be accessed through It should be noted that the here needs to be X.X.X.X with your server IP.

Using ๐Ÿค— Diffusers

Please install PyTorch version 2.0 or higher in advance to satisfy the requirements of the specified version of the diffusers library.

Install ๐Ÿค— diffusers, ensuring that the version is at least 0.28.1:

pip install git+


pip install diffusers

You can generate images with both Chinese and English prompts using the following Python script:

import torch
from diffusers import HunyuanDiTPipeline

pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16)"cuda")

# You may also use English prompt as HunyuanDiT supports both English and Chinese
# prompt = "An astronaut riding a horse"
prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
image = pipe(prompt).images[0]

You can use our distilled model to generate images even faster:

import torch
from diffusers import HunyuanDiTPipeline

pipe = HunyuanDiTPipeline.from_pretrained("Tencent-Hunyuan/HunyuanDiT-Diffusers-Distilled", torch_dtype=torch.float16)"cuda")

# You may also use English prompt as HunyuanDiT supports both English and Chinese
# prompt = "An astronaut riding a horse"
prompt = "ไธ€ไธชๅฎ‡่ˆชๅ‘˜ๅœจ้ช‘้ฉฌ"
image = pipe(prompt, num_inference_steps=25).images[0]

More details can be found in HunyuanDiT-Diffusers-Distilled

Using Command Line

We provide several commands to quick start:

# Prompt Enhancement + Text-to-Image. Torch mode
python --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"

# Only Text-to-Image. Torch mode
python --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --no-enhance

# Only Text-to-Image. Flash Attention mode
python --infer-mode fa --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"

# Generate an image with other image sizes.
python --prompt "ๆธ”่ˆŸๅ”ฑๆ™š" --image-size 1280 768

# Prompt Enhancement + Text-to-Image. DialogGen loads with 4-bit quantization, but it may loss performance.
python --prompt "ๆธ”่ˆŸๅ”ฑๆ™š"  --load-4bit

More example prompts can be found in example_prompts.txt

More Configurations

We list some more useful configurations for easy usage:

Argument Default Description
--prompt None The text prompt for image generation
--image-size 1024 1024 The size of the generated image
--seed 42 The random seed for generating images
--infer-steps 100 The number of steps for sampling
--negative - The negative prompt for image generation
--infer-mode torch The inference mode (torch, fa, or trt)
--sampler ddpm The diffusion sampler (ddpm, ddim, or dpmms)
--no-enhance False Disable the prompt enhancement model
--model-root ckpts The root directory of the model checkpoints
--load-key ema Load the student model or EMA model (ema or module)
--load-4bit Fasle Load DialogGen model with 4bit quantization

Using ComfyUI

We provide several commands to quick start:

# Download comfyui code
git clone

# Install torch, torchvision, torchaudio
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url

# Install Comfyui essential python package
cd ComfyUI
pip install -r requirements.txt

# ComfyUI has been successfully installed!

# Download model weight as before or link the existing model folder to ComfyUI.
python -m pip install "huggingface_hub[cli]"
mkdir models/hunyuan
huggingface-cli download Tencent-Hunyuan/HunyuanDiT --local-dir ./models/hunyuan/ckpts

# Move to the ComfyUI custom_nodes folder and copy comfyui-hydit folder from HunyuanDiT Repo.
cd custom_nodes
cp -r ${HunyuanDiT}/comfyui-hydit ./
cd comfyui-hydit

# Install some essential python Package.
pip install -r requirements.txt

# Our tool has been successfully installed!

# Go to ComfyUI main folder
cd ../..
# Run the ComfyUI Lauch command
python --listen --port 80

# Running ComfyUI successfully!

More details can be found in ComfyUI README

๐Ÿš€ Acceleration (for Linux)

๐Ÿ”— BibTeX

If you find Hunyuan-DiT or DialogGen useful for your research and applications, please cite using this BibTeX:

      title={Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding}, 
      author={Zhimin Li and Jianwei Zhang and Qin Lin and Jiangfeng Xiong and Yanxin Long and Xinchi Deng and Yingfang Zhang and Xingchao Liu and Minbin Huang and Zedong Xiao and Dayou Chen and Jiajun He and Jiahao Li and Wenyue Li and Chen Zhang and Rongwei Quan and Jianxiang Lu and Jiabin Huang and Xiaoyan Yuan and Xiaoxiao Zheng and Yixuan Li and Jihong Zhang and Chao Zhang and Meng Chen and Jie Liu and Zheng Fang and Weiyan Wang and Jinbao Xue and Yangyu Tao and Jianchen Zhu and Kai Liu and Sihuan Lin and Yifu Sun and Yun Li and Dongdong Wang and Mingtao Chen and Zhichao Hu and Xiao Xiao and Yan Chen and Yuhong Liu and Wei Liu and Di Wang and Yong Yang and Jie Jiang and Qinglin Lu},

  title={DialogGen: Multi-modal Interactive Dialogue System for Multi-turn Text-to-Image Generation},
  author={Huang, Minbin and Long, Yanxin and Deng, Xinchi and Chu, Ruihang and Xiong, Jiangfeng and Liang, Xiaodan and Cheng, Hong and Lu, Qinglin and Liu, Wei},
  journal={arXiv preprint arXiv:2403.08857},

Start History

Star History Chart
Downloads last month
Unable to determine this modelโ€™s pipeline type. Check the docs .

Spaces using Tencent-Hunyuan/HunyuanDiT-v1.1 2