resnet-50-resnet50_fashion

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1064
  • Accuracy: 0.9740

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 7
  • total_train_batch_size: 56
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6532 0.99 86 0.6781 0.6345
0.5407 2.0 173 0.5222 0.8590
0.4086 2.99 259 0.3595 0.8924
0.3449 4.0 346 0.2616 0.9184
0.3518 4.99 432 0.2288 0.9443
0.308 6.0 519 0.2758 0.9425
0.3209 7.0 606 0.3777 0.9369
0.284 7.99 692 0.1704 0.9555
0.2466 9.0 779 0.1571 0.9462
0.3123 9.99 865 0.6492 0.9406
0.2827 11.0 952 0.4968 0.9406
0.2736 11.99 1038 0.1370 0.9592
0.2476 13.0 1125 0.1616 0.9499
0.195 14.0 1212 0.1362 0.9610
0.2536 14.99 1298 0.1298 0.9536
0.2022 16.0 1385 0.7470 0.9518
0.2406 16.99 1471 0.1241 0.9647
0.2019 18.0 1558 0.1278 0.9536
0.2073 18.99 1644 0.1134 0.9685
0.1873 20.0 1731 0.6738 0.9629
0.2446 21.0 1818 0.1033 0.9685
0.1999 21.99 1904 0.1181 0.9647
0.1716 23.0 1991 0.1099 0.9610
0.175 23.99 2077 0.1064 0.9740
0.1962 25.0 2164 0.1174 0.9722
0.1943 25.99 2250 1.0625 0.9518
0.2044 27.0 2337 0.8419 0.9573
0.1835 28.0 2424 0.1112 0.9703
0.191 28.99 2510 0.1142 0.9685
0.1676 30.0 2597 0.1080 0.9647
0.1533 30.99 2683 0.1494 0.9647
0.1991 32.0 2770 0.1000 0.9703
0.1845 32.99 2856 0.0989 0.9740
0.1605 34.0 2943 0.0975 0.9685
0.1928 35.0 3030 0.4555 0.9629
0.1506 35.99 3116 0.1059 0.9703
0.1912 37.0 3203 0.1016 0.9647
0.1689 37.99 3289 0.5421 0.9666
0.1467 39.0 3376 0.1095 0.9647
0.1513 39.99 3462 0.3828 0.9703
0.1768 41.0 3549 0.0945 0.9703
0.1633 42.0 3636 0.2250 0.9592
0.1945 42.99 3722 0.2015 0.9685
0.1896 44.0 3809 0.1114 0.9666
0.1629 44.99 3895 0.0954 0.9666
0.1825 46.0 3982 0.0974 0.9740
0.1664 46.99 4068 0.0939 0.9703
0.1535 48.0 4155 0.0935 0.9722
0.1801 49.0 4242 0.0999 0.9703
0.1502 49.67 4300 0.1959 0.9703

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
51
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results