Edit model card

resnet-50-LongSleeveCleanedData

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0889
  • Accuracy: 0.9788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 7
  • total_train_batch_size: 56
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9906 0.99 143 1.0394 0.6134
0.7315 2.0 287 0.6790 0.7631
0.559 3.0 431 0.4735 0.8547
0.4905 4.0 575 0.3148 0.8983
0.3465 5.0 719 0.2225 0.9363
0.3372 6.0 863 0.1839 0.9486
0.3349 7.0 1007 0.1617 0.9587
0.3159 7.99 1150 0.1323 0.9620
0.2805 9.0 1294 0.1660 0.9587
0.2657 10.0 1438 0.1456 0.9531
0.2929 11.0 1582 0.1086 0.9698
0.2763 12.0 1726 0.0886 0.9765
0.2475 13.0 1870 0.1041 0.9732
0.2148 14.0 2014 0.0955 0.9777
0.209 14.99 2157 0.1061 0.9709
0.2408 16.0 2301 0.0784 0.9743
0.222 17.0 2445 0.0839 0.9698
0.208 18.0 2589 0.0873 0.9732
0.2214 19.0 2733 0.0889 0.9788
0.2375 19.88 2860 0.0864 0.9743

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results