YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

hoa-1b4 - bnb 8bits

Original model description:

license: bigscience-bloom-rail-1.0 language: - vi - en library_name: transformers pipeline_tag: text-generation tags: - bloom - causal-lm - pytorch model-index: - name: vlsp-2023-vllm/hoa-1b4 results: - task: name: Word prediction type: text-generation dataset: type: vlsp-2023-vllm/vi_lambada name: vi_lambada split: test metrics: - type: Perplexity value: 8.606673731963474 - task: name: Fewshot Translation type: translation dataset: type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations name: English to Vietnamese Formal/Informal translation split: test metrics: - type: SacreBLEU value: 25.5 datasets: - vlsp-2023-vllm/vi_lambada metrics: - perplexity

Hoa 1B4 (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường)

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-1b4")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-1b4", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])
Downloads last month
3
Safetensors
Model size
1.31B params
Tensor type
F32
·
FP16
·
I8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.