YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Quantization made by Richard Erkhov.
hoa-1b4 - bnb 8bits
- Model creator: https://huggingface.co/vlsp-2023-vllm/
- Original model: https://huggingface.co/vlsp-2023-vllm/hoa-1b4/
Original model description:
license: bigscience-bloom-rail-1.0 language: - vi - en library_name: transformers pipeline_tag: text-generation tags: - bloom - causal-lm - pytorch model-index: - name: vlsp-2023-vllm/hoa-1b4 results: - task: name: Word prediction type: text-generation dataset: type: vlsp-2023-vllm/vi_lambada name: vi_lambada split: test metrics: - type: Perplexity value: 8.606673731963474 - task: name: Fewshot Translation type: translation dataset: type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations name: English to Vietnamese Formal/Informal translation split: test metrics: - type: SacreBLEU value: 25.5 datasets: - vlsp-2023-vllm/vi_lambada metrics: - perplexity
Hoa 1B4 (Bloom architecture)
Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.
Details will be available soon.
To contact us, mail to: leanhcuong@gmail.com (Lê Anh Cường) | hieunguyen1053@outlook.com (Hiếu) | nv.cuong@int2.vn (Nguyễn Việt Cường)
How to use
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-1b4")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-1b4", low_cpu_mem_usage=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)
gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)
print(tokenizer.batch_decode(gen_tokens)[0])
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.