Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

opt-350m-multiprompt - bnb 8bits

Original model description:

license: other tags: - generated_from_trainer - text generation - stable diffusion - midjourney - text2image - text to image - prompt augment - prompt engineering thumbnail: https://i.imgur.com/DeKNHtC.jpg datasets: - pszemraj/text2image-multi-prompt widget: - text: "morning sun over Jakarta" example_title: "morning sun" - text: "WARNING: pip is" example_title: "pip" - text: "sentient cheese" example_title: "sentient cheese" - text: "cheeps are" example_title: "cheeps" - text: "avocado armchair" example_title: "creative prompt" - text: "Landscape of" example_title: "landscape" parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: True

pszemraj/opt-350m-multiprompt

Open In Colab

Generate/augment your prompt with a model trained on a large & diverse prompt dataset.

This model is a fine-tuned version of facebook/opt-350m on the pszemraj/text2image-prompts-multi dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6669
  • eval steps per second: 16.21
  • perplexity: 5.29

Example

landscape of florida


The above example was created with DALL-E 2 but will of course work with any text2image model.

Intended uses & limitations

  • The model will generate augmentations that are biased towards the training data, i.e. what people already asked for in the SD/midjourney discords, etc. Creating a larger dataset was an attempt at mitigating this through more data from different datasets.

Training and evaluation data

See the pszemraj/text2image-prompts-multi dataset card for details. The dataset is a compilation of several text-to-image prompt datasets on huggingface :)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.04
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
2.1677 1.0 990 2.0888
1.856 2.0 1980 1.8215
1.6864 3.0 2970 1.6935
1.6228 4.0 3960 1.6670

Framework versions

  • Transformers 4.25.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.6.1
  • Tokenizers 0.13.1
Downloads last month
4
Safetensors
Model size
331M params
Tensor type
F32
FP16
I8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.