Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

bloom-560m-finetuned-sd-prompts - bnb 8bits

Original model description:

license: bigscience-bloom-rail-1.0 tags:

  • generated_from_trainer
  • stable-diffusion
  • diffusion model-index:
  • name: bloom-560m-finetuned-sd-prompts results: []

datasets:

  • Gustavosta/Stable-Diffusion-Prompts

widget:

  • text: "Prompt: young, curly haired, redhead Natalie Portman as a"
  • text: "Prompt: a powerful energy woman, by alexander fedosav"

inference: parameters: eos_token_id: 2 max_length: 128

bloom-560m-finetuned-sd-prompts

This model is a fine-tuned version of bigscience/bloom-560m on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8742

Example of usage

import torch
from transformers import BloomTokenizerFast, BloomForCausalLM

device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = 'mrm8488/bloom-560m-finetuned-sd-prompts' 

tokenizer = BloomTokenizerFast.from_pretrained(ckpt)
model = BloomForCausalLM.from_pretrained(ckpt).to(device)

def generate_prompt(text):
    inputs = tokenizer(text, return_tensors='pt')
    input_ids = inputs.input_ids.to(device)
    attention_mask = inputs.attention_mask.to(device)
    output = model.generate(input_ids, attention_mask=attention_mask, repetition_penalty=1.05, max_length=2048, eos_token_id=tokenizer.eos_token_id)

    return tokenizer.decode(output[0], skip_special_tokens=False)
    
text = "<s>Prompt: pikachu dinning in the eiffel tower"

generate_prompt(text)

# Output: <s>Prompt: pikachu dinning in the eiffel tower, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha</s>

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.6743 0.17 100 2.0891
1.8919 0.33 200 1.7191
1.5907 0.5 300 1.4454
1.3865 0.67 400 1.3247
1.2487 0.83 500 1.2150
1.1565 1.0 600 1.1031
0.896 1.17 700 1.0612
0.8389 1.33 800 0.9994
0.8071 1.5 900 0.9530
0.7628 1.67 1000 0.9206
0.7423 1.83 1100 0.8883
0.7155 2.0 1200 0.8742

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
5
Safetensors
Model size
559M params
Tensor type
F32
FP16
I8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.