NeuralDaredevil-7B-GGUF
- This is quantized version of mlabonne/NeuralDaredevil-7B created using llama.cpp
Model Description
NeuralDaredevil-7B is a DPO fine-tune of mlabonne/Daredevil-7B using the argilla/distilabel-intel-orca-dpo-pairs preference dataset and my DPO notebook from this article.
Thanks Argilla for providing the dataset and the training recipe here. πͺ
π Evaluation
Nous
The evaluation was performed using LLM AutoEval on Nous suite.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
mlabonne/NeuralDaredevil-7B π | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
mlabonne/Beagle14-7B π | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
argilla/distilabeled-Marcoro14-7B-slerp π | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
mlabonne/NeuralMarcoro14-7B π | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
openchat/openchat-3.5-0106 π | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
teknium/OpenHermes-2.5-Mistral-7B π | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
You can find the complete benchmark on YALL - Yet Another LLM Leaderboard.
Open LLM Leaderboard
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 74.12 |
AI2 Reasoning Challenge (25-Shot) | 69.88 |
HellaSwag (10-Shot) | 87.62 |
MMLU (5-Shot) | 65.12 |
TruthfulQA (0-shot) | 66.85 |
Winogrande (5-shot) | 82.08 |
GSM8k (5-shot) | 73.16 |
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralDaredevil-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 56
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for QuantFactory/NeuralDaredevil-7B-GGUF
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.880
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.620
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard65.120
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard66.850
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard82.080
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard73.160