Pawel's picture
1 55

Pawel

Pwlot
Β·

AI & ML interests

AGI

Recent Activity

liked a model about 1 month ago
lerobot/pi0
liked a dataset 3 months ago
HuggingFaceTB/finemath
liked a model 10 months ago
jasperai/flash-sdxl
View all activity

Organizations

AI XP LAB's profile picture Social Post Explorers's profile picture

Pwlot's activity

reacted to Sentdex's post with πŸ‘ 11 months ago
view post
Post
8970
Okay, first pass over KAN: Kolmogorov–Arnold Networks, it looks very interesting!

Interpretability of KAN model:
May be considered mostly as a safety issue these days, but it can also be used as a form of interaction between the user and a model, as this paper argues and I think they make a valid point here. With MLP, we only interact with the outputs, but KAN is an entirely different paradigm and I find it compelling.

Scalability:
KAN shows better parameter efficiency than MLP. This likely translates also to needing less data. We're already at the point with the frontier LLMs where all the data available from the internet is used + more is made synthetically...so we kind of need something better.

Continual learning:
KAN can handle new input information w/o catastrophic forgetting, which helps to keep a model up to date without relying on some database or retraining.

Sequential data:
This is probably what most people are curious about right now, and KANs are not shown to work with sequential data yet and it's unclear what the best approach might be to make it work well both in training and regarding the interpretability aspect. That said, there's a rich long history of achieving sequential data in variety of ways, so I don't think getting the ball rolling here would be too challenging.

Mostly, I just love a new paradigm and I want to see more!

KAN: Kolmogorov-Arnold Networks (2404.19756)
Β·
reacted to clem's post with πŸ‘ about 1 year ago
view post
Post
Is synthetic data the future of AI? πŸ”₯πŸ”₯πŸ”₯

@HugoLaurencon @Leyo & @VictorSanh are introducing HuggingFaceM4/WebSight , a multimodal dataset featuring 823,000 pairs of synthetically generated HTML/CSS codes along with screenshots of the corresponding rendered websites to train GPT4-V-like models πŸŒπŸ’»

While crafting their upcoming foundation vision language model, they faced the challenge of converting website screenshots into usable HTML/CSS codes. Most VLMs suck at this and there was no public dataset available for this specific task, so they decided to create their own.

They prompted existing LLMs to generate 823k HTML/CSS codes of very simple websites. Through supervised fine-tuning of a vision language model on WebSight, they were able to generate the code to reproduce a website component, given a screenshot.

You can explore the dataset here: HuggingFaceM4/WebSight

What do you think?
Β·