Upload folder using huggingface_hub

#1
by sharpenb - opened
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ thumbnail: "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg"
3
+ metrics:
4
+ - memory_disk
5
+ - memory_inference
6
+ - inference_latency
7
+ - inference_throughput
8
+ - inference_CO2_emissions
9
+ - inference_energy_consumption
10
+ tags:
11
+ - pruna-ai
12
+ ---
13
+ <!-- header start -->
14
+ <!-- 200823 -->
15
+ <div style="width: auto; margin-left: auto; margin-right: auto">
16
+ <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer">
17
+ <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
18
+ </a>
19
+ </div>
20
+ <!-- header end -->
21
+
22
+ [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI)
23
+ [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI)
24
+ [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following)
25
+ [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck)
26
+
27
+ # Simply make AI models cheaper, smaller, faster, and greener!
28
+
29
+ - Give a thumbs up if you like this model!
30
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
31
+ - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
32
+ - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/)
33
+ - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help.
34
+
35
+ ## Results
36
+
37
+ ![image info](./plots.png)
38
+
39
+ **Frequently Asked Questions**
40
+ - ***How does the compression work?*** The model is compressed with llm-int8.
41
+ - ***How does the model quality change?*** The quality of the model output might vary compared to the base model.
42
+ - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.
43
+ - ***What is the model format?*** We use safetensors.
44
+ - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data.
45
+ - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.
46
+ - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
47
+ - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.
48
+ - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.
49
+
50
+ ## Setup
51
+
52
+ You can run the smashed model with these steps:
53
+
54
+ 0. Check requirements from the original repo bigcode/santacoder installed. In particular, check python, cuda, and transformers versions.
55
+ 1. Make sure that you have installed quantization related packages.
56
+ ```bash
57
+ pip install transformers accelerate bitsandbytes>0.37.0
58
+ ```
59
+ 2. Load & run the model.
60
+ ```python
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer
62
+
63
+ model = AutoModelForCausalLM.from_pretrained("PrunaAI/bigcode-santacoder-bnb-4bit-smashed",
64
+ trust_remote_code=True)
65
+ tokenizer = AutoTokenizer.from_pretrained("bigcode/santacoder")
66
+
67
+ input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"]
68
+
69
+ outputs = model.generate(input_ids, max_new_tokens=216)
70
+ tokenizer.decode(outputs[0])
71
+ ```
72
+
73
+ ## Configurations
74
+
75
+ The configuration info are in `smash_config.json`.
76
+
77
+ ## Credits & License
78
+
79
+ The license of the smashed model follows the license of the original model. Please check the license of the original model bigcode/santacoder before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi.
80
+
81
+ ## Want to compress other models?
82
+
83
+ - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact).
84
+ - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/tmp/tmppkofl_7p",
3
+ "activation_function": "gelu_fast",
4
+ "architectures": [
5
+ "GPT2LMHeadCustomModel"
6
+ ],
7
+ "attention_head_type": "multiquery",
8
+ "attn_pdrop": 0.1,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_gpt2_mq.GPT2CustomConfig",
11
+ "AutoModelForCausalLM": "modeling_gpt2_mq.GPT2LMHeadCustomModel"
12
+ },
13
+ "bos_token_id": 49152,
14
+ "embd_pdrop": 0.1,
15
+ "eos_token_id": 49152,
16
+ "initializer_range": 0.02,
17
+ "layer_norm_epsilon": 1e-05,
18
+ "model_type": "gpt2",
19
+ "n_embd": 2048,
20
+ "n_head": 16,
21
+ "n_inner": 8192,
22
+ "n_layer": 24,
23
+ "n_positions": 2048,
24
+ "quantization_config": {
25
+ "bnb_4bit_compute_dtype": "bfloat16",
26
+ "bnb_4bit_quant_type": "fp4",
27
+ "bnb_4bit_use_double_quant": true,
28
+ "llm_int8_enable_fp32_cpu_offload": false,
29
+ "llm_int8_has_fp16_weight": false,
30
+ "llm_int8_skip_modules": [
31
+ "lm_head"
32
+ ],
33
+ "llm_int8_threshold": 6.0,
34
+ "load_in_4bit": true,
35
+ "load_in_8bit": false,
36
+ "quant_method": "bitsandbytes"
37
+ },
38
+ "reorder_and_upcast_attn": false,
39
+ "resid_pdrop": 0.1,
40
+ "scale_attn_by_inverse_layer_idx": false,
41
+ "scale_attn_weights": true,
42
+ "summary_activation": null,
43
+ "summary_first_dropout": 0.1,
44
+ "summary_proj_to_labels": true,
45
+ "summary_type": "cls_index",
46
+ "summary_use_proj": true,
47
+ "torch_dtype": "float16",
48
+ "transformers_version": "4.37.1",
49
+ "use_cache": true,
50
+ "vocab_size": 49280
51
+ }
configuration_gpt2_mq.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2018 The OpenAI Team Authors and Hugging Face Inc. team.
3
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ Custom GPT-2 configuration"""
17
+ from collections import OrderedDict
18
+ from typing import Any, List, Mapping, Optional
19
+ from enum import Enum
20
+
21
+ from transformers import PreTrainedTokenizer, TensorType, is_torch_available
22
+
23
+ from transformers.configuration_utils import PretrainedConfig
24
+ from transformers.onnx import OnnxConfigWithPast, PatchingSpec
25
+ from transformers.utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+ GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
31
+ "gpt2": "https://huggingface.co/gpt2/resolve/main/config.json",
32
+ "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/config.json",
33
+ "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/config.json",
34
+ "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/config.json",
35
+ "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/config.json",
36
+ }
37
+
38
+ MULTI_HEAD = "multihead"
39
+ MULTI_QUERY = "multiquery"
40
+
41
+
42
+ class GPT2CustomConfig(PretrainedConfig):
43
+ """
44
+ This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to
45
+ instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a
46
+ configuration with the defaults will yield a similar configuration to that of the GPT-2
47
+ [gpt2](https://huggingface.co/gpt2) architecture.
48
+
49
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
50
+ documentation from [`PretrainedConfig`] for more information.
51
+
52
+
53
+ Args:
54
+ vocab_size (`int`, *optional*, defaults to 50257):
55
+ Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
56
+ `inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`].
57
+ n_positions (`int`, *optional*, defaults to 1024):
58
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
59
+ just in case (e.g., 512 or 1024 or 2048).
60
+ n_embd (`int`, *optional*, defaults to 768):
61
+ Dimensionality of the embeddings and hidden states.
62
+ n_layer (`int`, *optional*, defaults to 12):
63
+ Number of hidden layers in the Transformer encoder.
64
+ n_head (`int`, *optional*, defaults to 12):
65
+ Number of attention heads for each attention layer in the Transformer encoder.
66
+ n_inner (`int`, *optional*, defaults to None):
67
+ Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
68
+ activation_function (`str`, *optional*, defaults to `"gelu"`):
69
+ Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
70
+ resid_pdrop (`float`, *optional*, defaults to 0.1):
71
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
72
+ embd_pdrop (`int`, *optional*, defaults to 0.1):
73
+ The dropout ratio for the embeddings.
74
+ attn_pdrop (`float`, *optional*, defaults to 0.1):
75
+ The dropout ratio for the attention.
76
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
77
+ The epsilon to use in the layer normalization layers.
78
+ initializer_range (`float`, *optional*, defaults to 0.02):
79
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
80
+ summary_type (`string`, *optional*, defaults to `"cls_index"`):
81
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
82
+ [`TFGPT2DoubleHeadsModel`].
83
+
84
+ Has to be one of the following options:
85
+
86
+ - `"last"`: Take the last token hidden state (like XLNet).
87
+ - `"first"`: Take the first token hidden state (like BERT).
88
+ - `"mean"`: Take the mean of all tokens hidden states.
89
+ - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
90
+ - `"attn"`: Not implemented now, use multi-head attention.
91
+ summary_use_proj (`bool`, *optional*, defaults to `True`):
92
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
93
+ [`TFGPT2DoubleHeadsModel`].
94
+
95
+ Whether or not to add a projection after the vector extraction.
96
+ summary_activation (`str`, *optional*):
97
+ Argument used when doing sequence summary. Used in for the multiple choice head in
98
+ [`GPT2DoubleHeadsModel`].
99
+
100
+ Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
101
+ summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
102
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
103
+ [`TFGPT2DoubleHeadsModel`].
104
+
105
+ Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
106
+ summary_first_dropout (`float`, *optional*, defaults to 0.1):
107
+ Argument used when doing sequence summary, used in the models [`GPT2DoubleHeadsModel`] and
108
+ [`TFGPT2DoubleHeadsModel`].
109
+
110
+ The dropout ratio to be used after the projection and activation.
111
+ scale_attn_weights (`bool`, *optional*, defaults to `True`):
112
+ Scale attention weights by dividing by sqrt(head_dim)..
113
+ use_cache (`bool`, *optional*, defaults to `True`):
114
+ Whether or not the model should return the last key/values attentions (not used by all models).
115
+ scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`):
116
+ Whether to additionally scale attention weights by `1 / layer_idx + 1`.
117
+ reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`):
118
+ Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention
119
+ dot-product/softmax to float() when training with mixed precision.
120
+
121
+ Example:
122
+
123
+ ```python
124
+ >>> from transformers import GPT2Config, GPT2Model
125
+
126
+ >>> # Initializing a GPT2 configuration
127
+ >>> configuration = GPT2Config()
128
+
129
+ >>> # Initializing a model (with random weights) from the configuration
130
+ >>> model = GPT2Model(configuration)
131
+
132
+ >>> # Accessing the model configuration
133
+ >>> configuration = model.config
134
+ ```"""
135
+
136
+ model_type = "gpt2"
137
+ keys_to_ignore_at_inference = ["past_key_values"]
138
+ attribute_map = {
139
+ "hidden_size": "n_embd",
140
+ "max_position_embeddings": "n_positions",
141
+ "num_attention_heads": "n_head",
142
+ "num_hidden_layers": "n_layer",
143
+ }
144
+
145
+ def __init__(
146
+ self,
147
+ vocab_size=50257,
148
+ n_positions=1024,
149
+ n_embd=768,
150
+ n_layer=12,
151
+ n_head=12,
152
+ n_inner=None,
153
+ activation_function="gelu_new",
154
+ resid_pdrop=0.1,
155
+ embd_pdrop=0.1,
156
+ attn_pdrop=0.1,
157
+ layer_norm_epsilon=1e-5,
158
+ initializer_range=0.02,
159
+ summary_type="cls_index",
160
+ summary_use_proj=True,
161
+ summary_activation=None,
162
+ summary_proj_to_labels=True,
163
+ summary_first_dropout=0.1,
164
+ scale_attn_weights=True,
165
+ use_cache=True,
166
+ bos_token_id=50256,
167
+ eos_token_id=50256,
168
+ scale_attn_by_inverse_layer_idx=False,
169
+ reorder_and_upcast_attn=False,
170
+ attention_head_type=MULTI_HEAD,
171
+ **kwargs,
172
+ ):
173
+ self.vocab_size = vocab_size
174
+ self.n_positions = n_positions
175
+ self.n_embd = n_embd
176
+ self.n_layer = n_layer
177
+ self.n_head = n_head
178
+ self.n_inner = n_inner
179
+ self.activation_function = activation_function
180
+ self.resid_pdrop = resid_pdrop
181
+ self.embd_pdrop = embd_pdrop
182
+ self.attn_pdrop = attn_pdrop
183
+ self.layer_norm_epsilon = layer_norm_epsilon
184
+ self.initializer_range = initializer_range
185
+ self.summary_type = summary_type
186
+ self.summary_use_proj = summary_use_proj
187
+ self.summary_activation = summary_activation
188
+ self.summary_first_dropout = summary_first_dropout
189
+ self.summary_proj_to_labels = summary_proj_to_labels
190
+ self.scale_attn_weights = scale_attn_weights
191
+ self.use_cache = use_cache
192
+ self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
193
+ self.reorder_and_upcast_attn = reorder_and_upcast_attn
194
+ self.attention_head_type = attention_head_type
195
+ # assert attention_head_type in [AttentionType.MULTI_HEAD, AttentionType.MULTI_QUERY]
196
+ assert attention_head_type in [MULTI_HEAD, MULTI_QUERY]
197
+
198
+ self.bos_token_id = bos_token_id
199
+ self.eos_token_id = eos_token_id
200
+
201
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 49152,
4
+ "eos_token_id": 49152,
5
+ "transformers_version": "4.37.1"
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dd5eb29012210f57e6646cfe88d931ee3cf621e4d652dd7a14e849be866b437
3
+ size 838045874
modeling_gpt2_mq.py ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch OpenAI GPT-2 model modified with MultiQuery attention"""
2
+
3
+
4
+ import math
5
+ import os
6
+ from dataclasses import dataclass
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.cuda.amp import autocast
13
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
14
+
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (
17
+ BaseModelOutputWithPastAndCrossAttentions,
18
+ CausalLMOutputWithCrossAttentions,
19
+ SequenceClassifierOutputWithPast,
20
+ TokenClassifierOutput,
21
+ )
22
+ from transformers.modeling_utils import PreTrainedModel, SequenceSummary
23
+ from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
24
+
25
+ from transformers.utils import (
26
+ ModelOutput,
27
+ add_code_sample_docstrings,
28
+ add_start_docstrings,
29
+ add_start_docstrings_to_model_forward,
30
+ logging,
31
+ replace_return_docstrings,
32
+ )
33
+ from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
34
+ from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel
35
+ from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY, MULTI_HEAD
36
+
37
+
38
+
39
+ class GPT2MQAttention(nn.Module):
40
+ def __init__(self, config, is_cross_attention=False, layer_idx=None):
41
+ super().__init__()
42
+ assert config.attention_head_type == MULTI_QUERY
43
+
44
+ max_positions = config.max_position_embeddings
45
+ self.register_buffer(
46
+ "bias",
47
+ torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
48
+ 1, 1, max_positions, max_positions
49
+ ),
50
+ )
51
+ self.register_buffer("masked_bias", torch.tensor(-1e4))
52
+
53
+ self.embed_dim = config.hidden_size
54
+ self.num_heads = config.num_attention_heads
55
+ self.head_dim = self.embed_dim // self.num_heads
56
+ self.split_size = self.embed_dim
57
+ if self.head_dim * self.num_heads != self.embed_dim:
58
+ raise ValueError(
59
+ f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
60
+ f" {self.num_heads})."
61
+ )
62
+
63
+ self.scale_attn_weights = config.scale_attn_weights
64
+ if is_cross_attention:
65
+ raise NotImplementedError("Cross-attention not implemented for MQA")
66
+ self.is_cross_attention = is_cross_attention
67
+
68
+ # Layer-wise attention scaling, reordering, and upcasting
69
+ self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
70
+ self.layer_idx = layer_idx
71
+ self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
72
+
73
+ if self.is_cross_attention:
74
+ self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
75
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
76
+ else:
77
+ # self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
78
+ self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
79
+ # Keys and values are shared across heads
80
+ self.kv_attn = Conv1D(2 * self.head_dim, self.embed_dim)
81
+ self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
82
+
83
+ self.attn_dropout = nn.Dropout(config.attn_pdrop)
84
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
85
+
86
+ self.pruned_heads = set()
87
+
88
+ def prune_heads(self, heads):
89
+ if len(heads) == 0:
90
+ return
91
+ heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
92
+ index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
93
+
94
+ # Prune conv1d layers
95
+ self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
96
+ self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
97
+
98
+ # Update hyper params
99
+ self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
100
+ self.num_heads = self.num_heads - len(heads)
101
+ self.pruned_heads = self.pruned_heads.union(heads)
102
+
103
+ def _attn(self, query, key, value, attention_mask=None, head_mask=None):
104
+ # query: (b, num_heads * sq, head_dim)
105
+ # key: (b, head_dim, sk)
106
+ # value: (b, sk, head_dim)
107
+ batch_size = query.size(0)
108
+ query_length = query.size(1) // self.num_heads
109
+ key_length = key.size(2)
110
+ # (b, num_heads * sq, head_dim) x (b, head_dim, sk) -> (b, num_heads * sq, sk)
111
+ attn_weights = torch.bmm(query, key)
112
+ # -> (b, num_heads, sq, sk)
113
+ attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length)
114
+
115
+ if self.scale_attn_weights:
116
+ attn_weights = attn_weights / torch.tensor(
117
+ value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
118
+ )
119
+
120
+ # Layer-wise attention scaling
121
+ if self.scale_attn_by_inverse_layer_idx:
122
+ attn_weights = attn_weights / float(self.layer_idx + 1)
123
+
124
+ if not self.is_cross_attention:
125
+ # if only "normal" attention layer implements causal mask
126
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
127
+ mask_value = torch.finfo(attn_weights.dtype).min
128
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
129
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
130
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
131
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
132
+
133
+ if attention_mask is not None:
134
+ # Apply the attention mask
135
+ attn_weights = attn_weights + attention_mask
136
+
137
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
138
+
139
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
140
+ attn_weights = attn_weights.type(value.dtype)
141
+ attn_weights = self.attn_dropout(attn_weights)
142
+
143
+ # Mask heads if we want to
144
+ if head_mask is not None:
145
+ attn_weights = attn_weights * head_mask
146
+
147
+ # (b, num_heads, sq, sk) -> (b, num_heads * sq, sk)
148
+ _attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length)
149
+ # (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim)
150
+ attn_output = torch.bmm(_attn_weights, value)
151
+ attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
152
+
153
+ return attn_output, attn_weights
154
+
155
+ def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
156
+ # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
157
+ bsz, num_heads, q_seq_len, dk = query.size()
158
+ _, _, k_seq_len, _ = key.size()
159
+
160
+ # Preallocate attn_weights for `baddbmm`
161
+ attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
162
+
163
+ # Compute Scale Factor
164
+ scale_factor = 1.0
165
+ if self.scale_attn_weights:
166
+ scale_factor /= float(value.size(-1)) ** 0.5
167
+
168
+ if self.scale_attn_by_inverse_layer_idx:
169
+ scale_factor /= float(self.layer_idx + 1)
170
+
171
+ # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
172
+ with autocast(enabled=False):
173
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
174
+ attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
175
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
176
+
177
+ if not self.is_cross_attention:
178
+ # if only "normal" attention layer implements causal mask
179
+ query_length, key_length = query.size(-2), key.size(-2)
180
+ causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
181
+ mask_value = torch.finfo(attn_weights.dtype).min
182
+ # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
183
+ # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
184
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
185
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
186
+
187
+ if attention_mask is not None:
188
+ # Apply the attention mask
189
+ attn_weights = attn_weights + attention_mask
190
+
191
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
192
+
193
+ # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
194
+ if attn_weights.dtype != torch.float32:
195
+ raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
196
+ attn_weights = attn_weights.type(value.dtype)
197
+ attn_weights = self.attn_dropout(attn_weights)
198
+
199
+ # Mask heads if we want to
200
+ if head_mask is not None:
201
+ attn_weights = attn_weights * head_mask
202
+
203
+ attn_output = torch.matmul(attn_weights, value)
204
+
205
+ return attn_output, attn_weights
206
+
207
+ def _split_heads(self, tensor, num_heads, attn_head_size):
208
+ """
209
+ Splits hidden_size dim into attn_head_size and num_heads
210
+ """
211
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
212
+ tensor = tensor.view(new_shape)
213
+ return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
214
+
215
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
216
+ """
217
+ Merges attn_head_size dim and num_attn_heads dim into hidden_size
218
+ """
219
+ tensor = tensor.permute(0, 2, 1, 3).contiguous()
220
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
221
+ return tensor.view(new_shape)
222
+
223
+ def forward(
224
+ self,
225
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
226
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
227
+ attention_mask: Optional[torch.FloatTensor] = None,
228
+ head_mask: Optional[torch.FloatTensor] = None,
229
+ encoder_hidden_states: Optional[torch.Tensor] = None,
230
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
231
+ use_cache: Optional[bool] = False,
232
+ output_attentions: Optional[bool] = False,
233
+ ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
234
+ if encoder_hidden_states is not None:
235
+ raise NotImplementedError("Cross-attention not implemented for MQA")
236
+ if not hasattr(self, "q_attn"):
237
+ raise ValueError(
238
+ "If class is used as cross attention, the weights `q_attn` have to be defined. "
239
+ "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
240
+ )
241
+
242
+ query = self.q_attn(hidden_states)
243
+ key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
244
+ attention_mask = encoder_attention_mask
245
+ else:
246
+ query = self.q_attn(hidden_states)
247
+ key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2)
248
+
249
+
250
+ batch_size, seq_length = query.shape[:2]
251
+ # (query_length, batch, num_heads, head_dim)
252
+ # (batch, num_heads * query_length, head_dim)\
253
+
254
+ # (batch, query_length, hidden_size) -> (batch, num_heads, query_length, head_dim)
255
+ query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).permute([0, 2, 1, 3])
256
+ # -> (batch, num_heads * query_length, head_dim)
257
+ query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim)
258
+
259
+ # (batch, query_length, hidden_size) -> (batch, query_length * num_heads, head_dim)
260
+ # query = query.view(
261
+ # batch_size, seq_length, self.num_heads, self.head_dim,
262
+ # ).reshape(
263
+ # batch_size, seq_length * self.num_heads, self.head_dim
264
+ # )
265
+ key = key.permute(0, 2, 1) # (batch_size, head_dim, seq_length)
266
+ # value (batch_size, seq_length, head_dim)
267
+
268
+ if layer_past is not None:
269
+ past_key, past_value = layer_past
270
+ # Concatenate on sequence dimension
271
+ key = torch.cat((past_key, key), dim=-1)
272
+ value = torch.cat((past_value, value), dim=-2)
273
+
274
+ if use_cache is True:
275
+ present = (key, value)
276
+ else:
277
+ present = None
278
+
279
+ if self.reorder_and_upcast_attn:
280
+ raise NotImplementedError("Reorder and upcast attention not implemented for MQA")
281
+ attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
282
+ else:
283
+ attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
284
+
285
+ attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
286
+ attn_output = self.c_proj(attn_output)
287
+ attn_output = self.resid_dropout(attn_output)
288
+
289
+ outputs = (attn_output, present)
290
+ if output_attentions:
291
+ outputs += (attn_weights,)
292
+
293
+ return outputs # a, present, (attentions)
294
+
295
+
296
+ # inherit from gpt_modeling.py, and override `attn` module
297
+ class GPT2CustomBlock(GPT2Block):
298
+
299
+ def __init__(self, config: GPT2CustomConfig, layer_idx=None):
300
+ super().__init__(config, layer_idx)
301
+ # Override attention module if using multiquery
302
+ if config.attention_head_type == MULTI_QUERY:
303
+ self.attn = GPT2MQAttention(config, layer_idx=layer_idx)
304
+ if config.add_cross_attention:
305
+ raise NotImplementedError("Cross-attention not implemented for MQA")
306
+
307
+
308
+ # inherit from gpt_modeling.py and override `__init__` method
309
+ class GPT2CustomModel(GPT2Model):
310
+ config_class = GPT2CustomConfig
311
+
312
+ def __init__(self, config):
313
+ GPT2PreTrainedModel.__init__(self, config)
314
+
315
+ self.embed_dim = config.hidden_size
316
+
317
+ self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
318
+ self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
319
+
320
+ self.drop = nn.Dropout(config.embd_pdrop)
321
+ self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
322
+ self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
323
+
324
+ # Model parallel
325
+ self.model_parallel = False
326
+ self.device_map = None
327
+ self.gradient_checkpointing = False
328
+
329
+ # Initialize weights and apply final processing
330
+ self.post_init()
331
+
332
+
333
+ class GPT2LMHeadCustomModel(GPT2LMHeadModel):
334
+ config_class = GPT2CustomConfig
335
+
336
+ def __init__(self, config):
337
+ GPT2PreTrainedModel.__init__(self, config)
338
+ self.transformer = GPT2CustomModel(config)
339
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
340
+
341
+ # Model parallel
342
+ self.model_parallel = False
343
+ self.device_map = None
344
+
345
+ # Initialize weights and apply final processing
346
+ self.post_init()
plots.png ADDED
smash_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "api_key": null,
3
+ "verify_url": "http://johnrachwan.pythonanywhere.com",
4
+ "smash_config": {
5
+ "pruners": "None",
6
+ "factorizers": "None",
7
+ "quantizers": "['llm-int8']",
8
+ "compilers": "None",
9
+ "task": "text_text_generation",
10
+ "device": "cuda",
11
+ "cache_dir": "/ceph/hdd/staff/charpent/.cache/modelsed4p5bm5",
12
+ "batch_size": 1,
13
+ "model_name": "bigcode/santacoder",
14
+ "pruning_ratio": 0.0,
15
+ "n_quantization_bits": 4,
16
+ "output_deviation": 0.005,
17
+ "max_batch_size": 1,
18
+ "qtype_weight": "torch.qint8",
19
+ "qtype_activation": "torch.quint8",
20
+ "qobserver": "<class 'torch.ao.quantization.observer.MinMaxObserver'>",
21
+ "qscheme": "torch.per_tensor_symmetric",
22
+ "qconfig": "x86",
23
+ "group_size": 128,
24
+ "damp_percent": 0.1,
25
+ "save_load_fn": "bitsandbytes"
26
+ }
27
+ }