Vortex
Collection
ModelCloud optimized and validated quants that pass/meet strict quality assurance on multiple benchmarks.
•
6 items
•
Updated
•
5
This model has been quantized using GPTQModel.
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPTQModel.load("ModelCloud/QwQ-32B-Preview-GPTQ-4bit")
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)