Edit model card

This model has been quantized using GPTQModel.

  • bits: 4
  • group_size: 128
  • desc_act: true
  • static_groups: false
  • sym: true
  • lm_head: false
  • damp_percent: 0.005
  • true_sequential: true
  • model_name_or_path: ""
  • model_file_base_name: "model"
  • quant_method: "gptq"
  • checkpoint_format: "gptq"
  • meta
    • quantizer: "gptqmodel:0.9.9-dev0"

Example:

from transformers import AutoTokenizer
from gptqmodel import GPTQModel

model_name = "ModelCloud/Meta-Llama-3.1-8B-Instruct-gptq-4bit"

prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}]

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = GPTQModel.from_quantized(model_name)

input_tensor = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

print(result)

lm-eval benchmark

|                 Tasks                 |Version|Filter|n-shot|  Metric  |   |Value |   |Stderr|
|---------------------------------------|------:|------|-----:|----------|---|-----:|---|-----:|
|arc_challenge                          |      1|none  |     0|acc       |↑  |0.5171|±  |0.0146|
|                                       |       |none  |     0|acc_norm  |↑  |0.5290|±  |0.0146|
|arc_easy                               |      1|none  |     0|acc       |↑  |0.8068|±  |0.0081|
|                                       |       |none  |     0|acc_norm  |↑  |0.7837|±  |0.0084|
|boolq                                  |      2|none  |     0|acc       |↑  |0.8232|±  |0.0067|
|hellaswag                              |      1|none  |     0|acc       |↑  |0.5787|±  |0.0049|
|                                       |       |none  |     0|acc_norm  |↑  |0.7765|±  |0.0042|
|lambada_openai                         |      1|none  |     0|acc       |↑  |0.7091|±  |0.0063|
|                                       |       |none  |     0|perplexity|↓  |3.6297|±  |0.0805|
|mmlu                                   |      1|none  |      |acc       |↑  |0.6421|±  |0.0039|
| - humanities                          |      1|none  |      |acc       |↑  |0.5932|±  |0.0069|
|  - formal_logic                       |      0|none  |     0|acc       |↑  |0.4206|±  |0.0442|
|  - high_school_european_history       |      0|none  |     0|acc       |↑  |0.7030|±  |0.0357|
|  - high_school_us_history             |      0|none  |     0|acc       |↑  |0.8039|±  |0.0279|
|  - high_school_world_history          |      0|none  |     0|acc       |↑  |0.8228|±  |0.0249|
|  - international_law                  |      0|none  |     0|acc       |↑  |0.7686|±  |0.0385|
|  - jurisprudence                      |      0|none  |     0|acc       |↑  |0.7685|±  |0.0408|
|  - logical_fallacies                  |      0|none  |     0|acc       |↑  |0.7914|±  |0.0319|
|  - moral_disputes                     |      0|none  |     0|acc       |↑  |0.7110|±  |0.0244|
|  - moral_scenarios                    |      0|none  |     0|acc       |↑  |0.4536|±  |0.0167|
|  - philosophy                         |      0|none  |     0|acc       |↑  |0.6913|±  |0.0262|
|  - prehistory                         |      0|none  |     0|acc       |↑  |0.7037|±  |0.0254|
|  - professional_law                   |      0|none  |     0|acc       |↑  |0.4739|±  |0.0128|
|  - world_religions                    |      0|none  |     0|acc       |↑  |0.7953|±  |0.0309|
| - other                               |      1|none  |      |acc       |↑  |0.7036|±  |0.0079|
|  - business_ethics                    |      0|none  |     0|acc       |↑  |0.6400|±  |0.0482|
|  - clinical_knowledge                 |      0|none  |     0|acc       |↑  |0.7094|±  |0.0279|
|  - college_medicine                   |      0|none  |     0|acc       |↑  |0.6358|±  |0.0367|
|  - global_facts                       |      0|none  |     0|acc       |↑  |0.3400|±  |0.0476|
|  - human_aging                        |      0|none  |     0|acc       |↑  |0.6457|±  |0.0321|
|  - management                         |      0|none  |     0|acc       |↑  |0.8544|±  |0.0349|
|  - marketing                          |      0|none  |     0|acc       |↑  |0.8761|±  |0.0216|
|  - medical_genetics                   |      0|none  |     0|acc       |↑  |0.7300|±  |0.0446|
|  - miscellaneous                      |      0|none  |     0|acc       |↑  |0.8148|±  |0.0139|
|  - nutrition                          |      0|none  |     0|acc       |↑  |0.7092|±  |0.0260|
|  - professional_accounting            |      0|none  |     0|acc       |↑  |0.5071|±  |0.0298|
|  - professional_medicine              |      0|none  |     0|acc       |↑  |0.7316|±  |0.0269|
|  - virology                           |      0|none  |     0|acc       |↑  |0.5000|±  |0.0389|
| - social sciences                     |      1|none  |      |acc       |↑  |0.7390|±  |0.0077|
|  - econometrics                       |      0|none  |     0|acc       |↑  |0.4561|±  |0.0469|
|  - high_school_geography              |      0|none  |     0|acc       |↑  |0.8333|±  |0.0266|
|  - high_school_government_and_politics|      0|none  |     0|acc       |↑  |0.8808|±  |0.0234|
|  - high_school_macroeconomics         |      0|none  |     0|acc       |↑  |0.6231|±  |0.0246|
|  - high_school_microeconomics         |      0|none  |     0|acc       |↑  |0.7437|±  |0.0284|
|  - high_school_psychology             |      0|none  |     0|acc       |↑  |0.8404|±  |0.0157|
|  - human_sexuality                    |      0|none  |     0|acc       |↑  |0.7481|±  |0.0381|
|  - professional_psychology            |      0|none  |     0|acc       |↑  |0.6814|±  |0.0189|
|  - public_relations                   |      0|none  |     0|acc       |↑  |0.6455|±  |0.0458|
|  - security_studies                   |      0|none  |     0|acc       |↑  |0.7143|±  |0.0289|
|  - sociology                          |      0|none  |     0|acc       |↑  |0.8259|±  |0.0268|
|  - us_foreign_policy                  |      0|none  |     0|acc       |↑  |0.8200|±  |0.0386|
| - stem                                |      1|none  |      |acc       |↑  |0.5601|±  |0.0085|
|  - abstract_algebra                   |      0|none  |     0|acc       |↑  |0.3500|±  |0.0479|
|  - anatomy                            |      0|none  |     0|acc       |↑  |0.6370|±  |0.0415|
|  - astronomy                          |      0|none  |     0|acc       |↑  |0.7566|±  |0.0349|
|  - college_biology                    |      0|none  |     0|acc       |↑  |0.7639|±  |0.0355|
|  - college_chemistry                  |      0|none  |     0|acc       |↑  |0.4800|±  |0.0502|
|  - college_computer_science           |      0|none  |     0|acc       |↑  |0.5000|±  |0.0503|
|  - college_mathematics                |      0|none  |     0|acc       |↑  |0.3200|±  |0.0469|
|  - college_physics                    |      0|none  |     0|acc       |↑  |0.4020|±  |0.0488|
|  - computer_security                  |      0|none  |     0|acc       |↑  |0.7600|±  |0.0429|
|  - conceptual_physics                 |      0|none  |     0|acc       |↑  |0.5574|±  |0.0325|
|  - electrical_engineering             |      0|none  |     0|acc       |↑  |0.6345|±  |0.0401|
|  - elementary_mathematics             |      0|none  |     0|acc       |↑  |0.4921|±  |0.0257|
|  - high_school_biology                |      0|none  |     0|acc       |↑  |0.7710|±  |0.0239|
|  - high_school_chemistry              |      0|none  |     0|acc       |↑  |0.5665|±  |0.0349|
|  - high_school_computer_science       |      0|none  |     0|acc       |↑  |0.7000|±  |0.0461|
|  - high_school_mathematics            |      0|none  |     0|acc       |↑  |0.4074|±  |0.0300|
|  - high_school_physics                |      0|none  |     0|acc       |↑  |0.4172|±  |0.0403|
|  - high_school_statistics             |      0|none  |     0|acc       |↑  |0.5278|±  |0.0340|
|  - machine_learning                   |      0|none  |     0|acc       |↑  |0.4732|±  |0.0474|
|openbookqa                             |      1|none  |     0|acc       |↑  |0.3360|±  |0.0211|
|                                       |       |none  |     0|acc_norm  |↑  |0.4220|±  |0.0221|
|piqa                                   |      1|none  |     0|acc       |↑  |0.7943|±  |0.0094|
|                                       |       |none  |     0|acc_norm  |↑  |0.7965|±  |0.0094|
|rte                                    |      1|none  |     0|acc       |↑  |0.6968|±  |0.0277|
|truthfulqa_mc1                         |      2|none  |     0|acc       |↑  |0.3439|±  |0.0166|
|winogrande                             |      1|none  |     0|acc       |↑  |0.7364|±  |0.0124|

|      Groups      |Version|Filter|n-shot|Metric|   |Value |   |Stderr|
|------------------|------:|------|------|------|---|-----:|---|-----:|
|mmlu              |      1|none  |      |acc   |↑  |0.6421|±  |0.0039|
| - humanities     |      1|none  |      |acc   |↑  |0.5932|±  |0.0069|
| - other          |      1|none  |      |acc   |↑  |0.7036|±  |0.0079|
| - social sciences|      1|none  |      |acc   |↑  |0.7390|±  |0.0077|
| - stem           |      1|none  |      |acc   |↑  |0.5601|±  |0.0085|
Downloads last month
208
Safetensors
Model size
1.99B params
Tensor type
I32
·
BF16
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.