Llama-31-8B_task-2_60-samples_config-4_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
1.5658 0.6957 2 1.5854
1.5728 1.7391 5 1.5836
1.583 2.7826 8 1.5803
1.562 3.8261 11 1.5753
1.5687 4.8696 14 1.5688
1.5495 5.9130 17 1.5600
1.5493 6.9565 20 1.5482
1.5379 8.0 23 1.5340
1.5155 8.6957 25 1.5222
1.5131 9.7391 28 1.5057
1.4971 10.7826 31 1.4859
1.4675 11.8261 34 1.4652
1.4518 12.8696 37 1.4474
1.4267 13.9130 40 1.4301
1.4004 14.9565 43 1.4132
1.3993 16.0 46 1.3976
1.3748 16.6957 48 1.3881
1.3664 17.7391 51 1.3743
1.3465 18.7826 54 1.3614
1.3407 19.8261 57 1.3488
1.32 20.8696 60 1.3369
1.305 21.9130 63 1.3247
1.281 22.9565 66 1.3119
1.2869 24.0 69 1.2986
1.2523 24.6957 71 1.2903
1.2642 25.7391 74 1.2783
1.2323 26.7826 77 1.2657
1.2121 27.8261 80 1.2535
1.1896 28.8696 83 1.2410
1.1678 29.9130 86 1.2283
1.1768 30.9565 89 1.2154
1.1824 32.0 92 1.2030
1.1589 32.6957 94 1.1948
1.126 33.7391 97 1.1820
1.1059 34.7826 100 1.1694
1.1334 35.8261 103 1.1582
1.1081 36.8696 106 1.1483
1.0794 37.9130 109 1.1392
1.0614 38.9565 112 1.1315
1.0877 40.0 115 1.1259
1.0198 40.6957 117 1.1229
1.0538 41.7391 120 1.1193
1.0351 42.7826 123 1.1165
1.0121 43.8261 126 1.1144
1.0475 44.8696 129 1.1125
1.035 45.9130 132 1.1105
1.0582 46.9565 135 1.1090
1.029 48.0 138 1.1072
1.0353 48.6957 140 1.1064
1.0203 49.7391 143 1.1048
1.0313 50.7826 146 1.1035
1.0473 51.8261 149 1.1026
1.0189 52.8696 152 1.1011
1.0088 53.9130 155 1.1001
1.0336 54.9565 158 1.0989
1.0014 56.0 161 1.0981
1.0036 56.6957 163 1.0972
1.0266 57.7391 166 1.0962
0.9893 58.7826 169 1.0956
1.0122 59.8261 172 1.0948
1.0456 60.8696 175 1.0939
0.9873 61.9130 178 1.0933
1.0189 62.9565 181 1.0926
1.0325 64.0 184 1.0918
1.0081 64.6957 186 1.0912
0.995 65.7391 189 1.0908
1.0104 66.7826 192 1.0903
0.9979 67.8261 195 1.0896
0.9927 68.8696 198 1.0893
0.9898 69.9130 201 1.0887
1.0087 70.9565 204 1.0882
0.9903 72.0 207 1.0878
1.0198 72.6957 209 1.0877
1.0078 73.7391 212 1.0874
1.0056 74.7826 215 1.0870
1.0114 75.8261 218 1.0867
0.9982 76.8696 221 1.0864
1.0105 77.9130 224 1.0860
1.0033 78.9565 227 1.0859
1.0024 80.0 230 1.0858
1.0091 80.6957 232 1.0855
0.9971 81.7391 235 1.0853
0.969 82.7826 238 1.0851
1.0242 83.8261 241 1.0847
0.9949 84.8696 244 1.0850
0.9715 85.9130 247 1.0847
1.0164 86.9565 250 1.0846
0.9729 88.0 253 1.0845
1.0065 88.6957 255 1.0845
0.994 89.7391 258 1.0845
0.9852 90.7826 261 1.0843
0.9755 91.8261 264 1.0842
1.0191 92.8696 267 1.0839
0.9864 93.9130 270 1.0841
0.9773 94.9565 273 1.0841
0.9869 96.0 276 1.0842
0.986 96.6957 278 1.0841
0.9925 97.7391 281 1.0840
0.9882 98.7826 284 1.0840
0.9917 99.8261 287 1.0840

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
54
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-2_60-samples_config-4_full

Adapter
(483)
this model

Collection including GaetanMichelet/Llama-31-8B_task-2_60-samples_config-4_full