Llama-31-8B_task-2_120-samples_config-1_full_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2_auto and the GaetanMichelet/chat-120_ft_task-2_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.4871 1.0 11 1.4805
1.2753 2.0 22 1.3422
1.1856 3.0 33 1.1891
1.0973 4.0 44 1.0591
1.0204 5.0 55 1.0277
0.9819 6.0 66 1.0086
0.948 7.0 77 0.9993
0.9103 8.0 88 0.9959
0.8302 9.0 99 1.0063
0.7247 10.0 110 1.0327
0.7159 11.0 121 1.0794
0.5506 12.0 132 1.1349
0.5606 13.0 143 1.1961
0.3523 14.0 154 1.2591
0.2739 15.0 165 1.3140

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-2_120-samples_config-1_full_auto

Adapter
(483)
this model

Collection including GaetanMichelet/Llama-31-8B_task-2_120-samples_config-1_full_auto