Llama-31-8B_task-1_120-samples_config-2_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto and the GaetanMichelet/chat-120_ft_task-1_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.8840

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.1727 0.9091 5 1.2190
1.1492 2.0 11 1.0507
0.9803 2.9091 16 1.0035
0.8687 4.0 22 0.9365
0.7872 4.9091 27 0.9064
0.7171 6.0 33 0.8840
0.5563 6.9091 38 0.9091
0.4878 8.0 44 1.0011
0.3849 8.9091 49 1.0698
0.2449 10.0 55 1.1907
0.1483 10.9091 60 1.3620
0.1039 12.0 66 1.4585
0.0637 12.9091 71 1.6115

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_120-samples_config-2_auto

Adapter
(483)
this model

Collection including GaetanMichelet/Llama-31-8B_task-1_120-samples_config-2_auto