See axolotl config
axolotl version: 0.4.1
base_model: Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP-ql-merge
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: llama3
datasets:
- path: Fischerboot/dataset
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 128
sample_packing: false
pad_to_sequence_len: true
lora_r: 1024
lora_alpha: 512
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 12
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
eval_sample_packing: false
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<|begin_of_text|>"
eos_token: "<|end_of_text|>"
pad_token: "<|end_of_text|>"
outputs/qlora-out
This model is a fine-tuned version of Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP-ql-merge on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8432
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 12
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
5.9056 | 0.0030 | 1 | 5.7722 |
0.0005 | 0.25 | 82 | 0.0921 |
0.0 | 0.5 | 164 | 0.0000 |
0.3708 | 0.75 | 246 | 0.0499 |
0.0006 | 1.0 | 328 | 0.0038 |
0.0 | 1.25 | 410 | 0.0000 |
0.3136 | 1.5 | 492 | 0.4388 |
0.0034 | 1.75 | 574 | 0.0247 |
0.0116 | 2.0 | 656 | 0.0023 |
0.001 | 2.25 | 738 | 0.0064 |
0.003 | 2.5 | 820 | 0.0092 |
0.0234 | 2.75 | 902 | 0.0134 |
0.0001 | 3.0 | 984 | 0.0001 |
1.0367 | 3.25 | 1066 | 0.6438 |
0.1164 | 3.5 | 1148 | 0.1633 |
0.3021 | 3.75 | 1230 | 0.1719 |
0.9067 | 4.0 | 1312 | 0.8432 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0