This model is a quantized version of stabilityai/stablelm-zephyr-3b
and is converted to the OpenVINO format. This model was obtained via the nncf-quantization space with optimum-intel.
Please note: For commercial use, please refer to https://stability.ai/license.
Model Description
StableLM Zephyr 3B is a 3 billion parameter instruction tuned inspired by HugginFaceH4's Zephyr 7B training pipeline this model was trained on a mix of publicly available datasets, synthetic datasets using Direct Preference Optimization (DPO), evaluation for this model based on MT Bench and Alpaca Benchmark
Model Parameters
context window = 4096
model type = 3B
model params = 2.80 B
BOS token = 0 '<|endoftext|>'
EOS token = 0 '<|endoftext|>'
UNK token = 0 '<|endoftext|>'
PAD token = 0 '<|endoftext|>'
The tokenizer of this model supports chat_templates
Usage
StableLM Zephyr 3B uses the following instruction format:
<|user|>
List 3 synonyms for the word "tiny"<|endoftext|>
<|assistant|>
1. Dwarf
2. Little
3. Petite<|endoftext|>
Model Details
- Developed by: Stability AI
- Model type: StableLM Zephyr 3B model is an auto-regressive language model based on the transformer decoder architecture.
- Language(s): English
- Library: Alignment Handbook
- Finetuned from model: stabilityai/stablelm-3b-4e1t
- License: StabilityAI Community License.
- Commercial License: to use this model commercially, please refer to https://stability.ai/license
- Contact: For questions and comments about the model, please email lm@stability.ai
First make sure you have optimum-intel
installed:
pip install openvino-genai==2024.4.0
pip install optimum-intel[openvino]
To load your model you can do as follows:
from optimum.intel import OVModelForCausalLM
from transformers import AutoTokenizer, AutoConfig
from threading import Thread
from transformers import TextIteratorStreamer
model_id = "FM-1976/stablelm-zephyr-3b-openvino-4bit"
model = OVModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
ov_model = OVModelForCausalLM.from_pretrained(
model_id = model_id,
device='CPU',
ov_config={"PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": ""},
config=AutoConfig.from_pretrained(model_id)
)
# Generation with a prompt message
question = 'Explain the plot of Cinderella in a sentence.'
messages = [
{"role": "user", "content": question}
]
print('Question:', question)
#Credit to https://github.com/openvino-dev-samples/chatglm3.openvino/blob/main/chat.py
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
model_inputs = tokenizer.apply_chat_template(messages,
add_generation_prompt=True,
tokenize=True,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1,
return_tensors="pt")
generate_kwargs = dict(input_ids=model_inputs,
max_new_tokens=450,
temperature=0.1,
do_sample=True,
top_p=0.5,
repetition_penalty=1.178,
streamer=streamer)
t1 = Thread(target=ov_model.generate, kwargs=generate_kwargs)
t1.start()
for new_text in streamer:
new_text = new_text
print(new_text, end="", flush=True)
- Downloads last month
- 7
Model tree for FM-1976/stablelm-zephyr-3b-openvino-4bit
Base model
stabilityai/stablelm-zephyr-3bDatasets used to train FM-1976/stablelm-zephyr-3b-openvino-4bit
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard46.080
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard74.160
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard46.170
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard46.490
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard65.510
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard42.150