Edit model card

beit-base-patch16-224-ve-U13-b-80

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6397
  • Accuracy: 0.8478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3187 0.4565
1.6193 2.0 13 1.3087 0.4565
1.6193 2.92 19 1.2939 0.4565
1.6044 4.0 26 1.2802 0.4565
1.5061 4.92 32 1.2867 0.4565
1.5061 6.0 39 1.2813 0.4565
1.3879 6.92 45 1.2511 0.4565
1.3007 8.0 52 1.1294 0.5652
1.3007 8.92 58 1.0096 0.5435
1.1213 10.0 65 0.9308 0.5217
0.9968 10.92 71 0.9280 0.5435
0.9968 12.0 78 0.8034 0.6087
0.8771 12.92 84 0.7791 0.6522
0.7383 14.0 91 0.8005 0.6739
0.7383 14.92 97 0.7408 0.7391
0.6658 16.0 104 0.9305 0.6304
0.5879 16.92 110 0.7136 0.7609
0.5879 18.0 117 0.7106 0.7609
0.4609 18.92 123 0.6998 0.6957
0.4123 20.0 130 0.7931 0.7609
0.4123 20.92 136 0.9417 0.6739
0.3552 22.0 143 0.7868 0.7174
0.3552 22.92 149 0.9073 0.6957
0.2896 24.0 156 0.8542 0.7174
0.2316 24.92 162 0.7159 0.7391
0.2316 26.0 169 0.7219 0.7174
0.2339 26.92 175 0.7071 0.7609
0.2055 28.0 182 1.0110 0.6739
0.2055 28.92 188 0.6397 0.8478
0.1995 30.0 195 0.6922 0.8478
0.169 30.92 201 0.6171 0.8478
0.169 32.0 208 0.6632 0.8261
0.1586 32.92 214 0.6475 0.8261
0.1439 34.0 221 0.8332 0.6957
0.1439 34.92 227 0.6816 0.7826
0.1698 36.0 234 0.8066 0.7609
0.1362 36.92 240 0.7150 0.8043
0.1362 38.0 247 0.7193 0.8043
0.1344 38.92 253 0.8181 0.7609
0.1317 40.0 260 0.6547 0.8261
0.1317 40.92 266 0.8459 0.7609
0.123 42.0 273 0.7700 0.8261
0.123 42.92 279 0.9338 0.7391
0.102 44.0 286 0.8536 0.8043
0.1015 44.92 292 0.9725 0.7391
0.1015 46.0 299 0.8865 0.8043
0.1313 46.92 305 0.8947 0.8261
0.1312 48.0 312 0.8235 0.8043
0.1312 48.92 318 0.7326 0.8261
0.1168 50.0 325 0.8654 0.7609
0.09 50.92 331 0.7645 0.8261
0.09 52.0 338 0.7632 0.8478
0.0872 52.92 344 0.7496 0.8043
0.0813 54.0 351 0.8846 0.8043
0.0813 54.92 357 0.9214 0.7826
0.0955 56.0 364 0.9284 0.7826
0.1031 56.92 370 0.8855 0.7826
0.1031 58.0 377 0.8619 0.8043
0.0962 58.92 383 0.8187 0.8261
0.0891 60.0 390 0.7430 0.8478
0.0891 60.92 396 0.7530 0.8478
0.0679 62.0 403 0.7790 0.8261
0.0679 62.92 409 0.7905 0.8261
0.0805 64.0 416 0.8286 0.8261
0.0619 64.92 422 0.8371 0.8043
0.0619 66.0 429 0.8655 0.8043
0.0778 66.92 435 0.8897 0.8043
0.0712 68.0 442 0.9385 0.8043
0.0712 68.92 448 0.9611 0.8043
0.0659 70.0 455 0.9597 0.8043
0.0602 70.92 461 0.9635 0.8043
0.0602 72.0 468 0.9733 0.8043
0.0641 72.92 474 0.9754 0.8043
0.0653 73.85 480 0.9753 0.8043

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
15
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/beit-base-patch16-224-ve-U13-b-80

Finetuned
(286)
this model

Evaluation results