metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-ve-U13-b-80
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8478260869565217
beit-base-patch16-224-ve-U13-b-80
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6397
- Accuracy: 0.8478
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.92 | 6 | 1.3187 | 0.4565 |
1.6193 | 2.0 | 13 | 1.3087 | 0.4565 |
1.6193 | 2.92 | 19 | 1.2939 | 0.4565 |
1.6044 | 4.0 | 26 | 1.2802 | 0.4565 |
1.5061 | 4.92 | 32 | 1.2867 | 0.4565 |
1.5061 | 6.0 | 39 | 1.2813 | 0.4565 |
1.3879 | 6.92 | 45 | 1.2511 | 0.4565 |
1.3007 | 8.0 | 52 | 1.1294 | 0.5652 |
1.3007 | 8.92 | 58 | 1.0096 | 0.5435 |
1.1213 | 10.0 | 65 | 0.9308 | 0.5217 |
0.9968 | 10.92 | 71 | 0.9280 | 0.5435 |
0.9968 | 12.0 | 78 | 0.8034 | 0.6087 |
0.8771 | 12.92 | 84 | 0.7791 | 0.6522 |
0.7383 | 14.0 | 91 | 0.8005 | 0.6739 |
0.7383 | 14.92 | 97 | 0.7408 | 0.7391 |
0.6658 | 16.0 | 104 | 0.9305 | 0.6304 |
0.5879 | 16.92 | 110 | 0.7136 | 0.7609 |
0.5879 | 18.0 | 117 | 0.7106 | 0.7609 |
0.4609 | 18.92 | 123 | 0.6998 | 0.6957 |
0.4123 | 20.0 | 130 | 0.7931 | 0.7609 |
0.4123 | 20.92 | 136 | 0.9417 | 0.6739 |
0.3552 | 22.0 | 143 | 0.7868 | 0.7174 |
0.3552 | 22.92 | 149 | 0.9073 | 0.6957 |
0.2896 | 24.0 | 156 | 0.8542 | 0.7174 |
0.2316 | 24.92 | 162 | 0.7159 | 0.7391 |
0.2316 | 26.0 | 169 | 0.7219 | 0.7174 |
0.2339 | 26.92 | 175 | 0.7071 | 0.7609 |
0.2055 | 28.0 | 182 | 1.0110 | 0.6739 |
0.2055 | 28.92 | 188 | 0.6397 | 0.8478 |
0.1995 | 30.0 | 195 | 0.6922 | 0.8478 |
0.169 | 30.92 | 201 | 0.6171 | 0.8478 |
0.169 | 32.0 | 208 | 0.6632 | 0.8261 |
0.1586 | 32.92 | 214 | 0.6475 | 0.8261 |
0.1439 | 34.0 | 221 | 0.8332 | 0.6957 |
0.1439 | 34.92 | 227 | 0.6816 | 0.7826 |
0.1698 | 36.0 | 234 | 0.8066 | 0.7609 |
0.1362 | 36.92 | 240 | 0.7150 | 0.8043 |
0.1362 | 38.0 | 247 | 0.7193 | 0.8043 |
0.1344 | 38.92 | 253 | 0.8181 | 0.7609 |
0.1317 | 40.0 | 260 | 0.6547 | 0.8261 |
0.1317 | 40.92 | 266 | 0.8459 | 0.7609 |
0.123 | 42.0 | 273 | 0.7700 | 0.8261 |
0.123 | 42.92 | 279 | 0.9338 | 0.7391 |
0.102 | 44.0 | 286 | 0.8536 | 0.8043 |
0.1015 | 44.92 | 292 | 0.9725 | 0.7391 |
0.1015 | 46.0 | 299 | 0.8865 | 0.8043 |
0.1313 | 46.92 | 305 | 0.8947 | 0.8261 |
0.1312 | 48.0 | 312 | 0.8235 | 0.8043 |
0.1312 | 48.92 | 318 | 0.7326 | 0.8261 |
0.1168 | 50.0 | 325 | 0.8654 | 0.7609 |
0.09 | 50.92 | 331 | 0.7645 | 0.8261 |
0.09 | 52.0 | 338 | 0.7632 | 0.8478 |
0.0872 | 52.92 | 344 | 0.7496 | 0.8043 |
0.0813 | 54.0 | 351 | 0.8846 | 0.8043 |
0.0813 | 54.92 | 357 | 0.9214 | 0.7826 |
0.0955 | 56.0 | 364 | 0.9284 | 0.7826 |
0.1031 | 56.92 | 370 | 0.8855 | 0.7826 |
0.1031 | 58.0 | 377 | 0.8619 | 0.8043 |
0.0962 | 58.92 | 383 | 0.8187 | 0.8261 |
0.0891 | 60.0 | 390 | 0.7430 | 0.8478 |
0.0891 | 60.92 | 396 | 0.7530 | 0.8478 |
0.0679 | 62.0 | 403 | 0.7790 | 0.8261 |
0.0679 | 62.92 | 409 | 0.7905 | 0.8261 |
0.0805 | 64.0 | 416 | 0.8286 | 0.8261 |
0.0619 | 64.92 | 422 | 0.8371 | 0.8043 |
0.0619 | 66.0 | 429 | 0.8655 | 0.8043 |
0.0778 | 66.92 | 435 | 0.8897 | 0.8043 |
0.0712 | 68.0 | 442 | 0.9385 | 0.8043 |
0.0712 | 68.92 | 448 | 0.9611 | 0.8043 |
0.0659 | 70.0 | 455 | 0.9597 | 0.8043 |
0.0602 | 70.92 | 461 | 0.9635 | 0.8043 |
0.0602 | 72.0 | 468 | 0.9733 | 0.8043 |
0.0641 | 72.92 | 474 | 0.9754 | 0.8043 |
0.0653 | 73.85 | 480 | 0.9753 | 0.8043 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0