RankingGPT-bloom-560m

RankingGPT is a text ranker based on large language models with significant in-domain and out-domain effectiveness. We provide RankingGPT in different sizes and types, including bloom-560m, bloom-1b1, bloom-3b, bloom-7b, llama2-7b, baichuan2-7b and qwen-7b.

More details please refer to our paper and github.

Usage

Code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('RankingGPT-bloom-560m')
model = AutoModelForCausalLM.from_pretrained('RankingGPT-bloom-560m').eval()

query='when should a baby walk'
document='Most babies start to walk around 13 months, but your baby may start walking as early as 9 or 10 months or as late as 15 or 16 months.'

context=f'Document: {document} Query:'
example=context+query

context_enc = tokenizer.encode(context, add_special_tokens=False)
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
model_input = torch.tensor(context_enc+continuation_enc[:-1])
continuation_len = len(continuation_enc)
input_len, = model_input.shape


with torch.no_grad():
    logprobs = torch.nn.functional.log_softmax(model(model_input.unsqueeze(dim=0))[0], dim=-1)[0]

logprobs = logprobs[input_len-continuation_len:]
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
score = torch.sum(logprobs)/logprobs.shape[0]

print(f"Document: {document[:20] + '...'} Score: {score}")

Result

DL19 DL20 BEIR url
MonoBERT-340M 72.3 70.3 50.5 huggingface
MonoT5-220M 71.5 69.7 49.3 huggingface
MonoT5-770M 73.2 71.2 53.1 huggingface
MonoT5-3B 72.8 74.5 54.6 huggingface
RankT5-770M - - 53.7 huggingface
RankLLaMA 74.6 76.6 52.5 huggingface
RankingGPT-bloom-560m 75.3 73.2 53.7 huggingface modelscope
RankingGPT-bloom-1b1 75.6 73.2 54.5 huggingface modelscope
RankingGPT-bloom-3b 76.8 73.6 56.2 huggingface modelscope
RankingGPT-bloom-7b 77.3 74.6 56.6 huggingface modelscope
RankingGPT-llama2-7b 76.2 76.3 57.8 huggingface modelscope
RankingGPT-baichuan2-7b 75.9 74.3 57.5 huggingface modelscope
RankingGPT-qwen-7b 75.8 74.3 58.3 huggingface modelscope

Citation

If you find our paper or models helpful, please consider citing them as follows:

@misc{zhang2023rankinggpt,
      title={RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement}, 
      author={Longhui Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang and Min Zhang},
      year={2023},
      eprint={2311.16720},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
Downloads last month
3,744
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zyznull/RankingGPT-bloom-560m

Quantizations
1 model