Edit model card

RankingGPT-baichuan2-7b

RankingGPT is a text ranker based on large language models with significant in-domain and out-domain effectiveness. We provide RankingGPT in different sizes and types, including bloom-560m, bloom-1b1, bloom-3b, bloom-7b, llama2-7b, baichuan2-7b and qwen-7b.

More details please refer to our paper and github.

Usage

Code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained('zyznull/RankingGPT-baichuan2-7b',trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained('zyznull/RankingGPT-baichuan2-7b',trust_remote_code=True).eval()

query='when should a baby walk'
document='Most babies start to walk around 13 months, but your baby may start walking as early as 9 or 10 months or as late as 15 or 16 months.'

context=f'Document: {document} Query:'
example=context+query

context_enc = tokenizer.encode(context, add_special_tokens=False)
continuation_enc = tokenizer.encode(query, add_special_tokens=False)
model_input = torch.tensor(context_enc+continuation_enc[:-1])
continuation_len = len(continuation_enc)
input_len, = model_input.shape


with torch.no_grad():
    logprobs = torch.nn.functional.log_softmax(model(model_input.unsqueeze(dim=0))[0], dim=-1)[0]

logprobs = logprobs[input_len-continuation_len:]
logprobs = torch.gather(logprobs, 1, torch.tensor(continuation_enc).unsqueeze(-1)).squeeze(-1)
score = torch.sum(logprobs)/logprobs.shape[0]

print(f"Document: {document[:20] + '...'} Score: {score}")

Result

DL19 DL20 BEIR url
MonoBERT-340M 72.3 70.3 50.5 huggingface
MonoT5-220M 71.5 69.7 49.3 huggingface
MonoT5-770M 73.2 71.2 53.1 huggingface
MonoT5-3B 72.8 74.5 54.6 huggingface
RankT5-770M - - 53.7 huggingface
RankLLaMA 74.6 76.6 52.5 huggingface
RankingGPT-bloom-560m 75.3 73.2 53.7 huggingface modelscope
RankingGPT-bloom-1b1 75.6 73.2 54.5 huggingface modelscope
RankingGPT-bloom-3b 76.8 73.6 56.2 huggingface modelscope
RankingGPT-bloom-7b 77.3 74.6 56.6 huggingface modelscope
RankingGPT-llama2-7b 76.2 76.3 57.8 huggingface modelscope
RankingGPT-baichuan2-7b 75.9 74.3 57.5 huggingface modelscope
RankingGPT-qwen-7b 75.8 74.3 58.3 huggingface modelscope

Citation

If you find our paper or models helpful, please consider citing them as follows:

@misc{zhang2023rankinggpt,
      title={RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement}, 
      author={Longhui Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang and Min Zhang},
      year={2023},
      eprint={2311.16720},
      archivePrefix={arXiv},
      primaryClass={cs.IR}
}
Downloads last month
4
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.