This model is for debugging. It is randomly initialized using the config from tiiuae/falcon-mamba-7b but with smaller size.
Codes:
import os
import torch
from huggingface_hub import create_repo, upload_folder
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
AutoConfig,
pipeline,
set_seed,
)
model_id = "tiiuae/falcon-mamba-7b"
repo_id = "yujiepan/falcon-mamba-tiny-random"
save_path = f"/tmp/{repo_id}"
os.system(f'rm -rf {save_path}')
config = AutoConfig.from_pretrained(model_id)
config.use_cache = True
config.num_hidden_layers = 2
config.hidden_size = 8
config.intermediate_size = 16
config.state_size = 8
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)
model = AutoModelForCausalLM.from_config(
config, torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
model_id,
trust_remote_code=True,
)
set_seed(42)
num_params = 0
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
print(name, p.shape)
torch.nn.init.uniform_(p, -0.5, 0.5)
num_params += p.numel()
print("Total number of parameters:", num_params)
model.save_pretrained(save_path)
pipe = pipeline(
"text-generation",
model=save_path,
device="cpu",
trust_remote_code=True,
max_new_tokens=20,
)
print(pipe("Hello World!"))
# create_repo(repo_id, exist_ok=True)
# upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.