Edit model card

This model is for debugging. It is randomly initialized using the config from tiiuae/falcon-mamba-7b but with smaller size.

Codes:

import os

import torch

from huggingface_hub import create_repo, upload_folder
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    AutoConfig,
    pipeline,
    set_seed,
)

model_id = "tiiuae/falcon-mamba-7b"
repo_id = "yujiepan/falcon-mamba-tiny-random"
save_path = f"/tmp/{repo_id}"
os.system(f'rm -rf {save_path}')

config = AutoConfig.from_pretrained(model_id)
config.use_cache = True
config.num_hidden_layers = 2
config.hidden_size = 8
config.intermediate_size = 16
config.state_size = 8

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
    model_id,
    trust_remote_code=True,
)

set_seed(42)
num_params = 0
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        print(name, p.shape)
        torch.nn.init.uniform_(p, -0.5, 0.5)
        num_params += p.numel()
print("Total number of parameters:", num_params)
model.save_pretrained(save_path)

pipe = pipeline(
    "text-generation",
    model=save_path,
    device="cpu",
    trust_remote_code=True,
    max_new_tokens=20,
)
print(pipe("Hello World!"))

# create_repo(repo_id, exist_ok=True)
# upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
Downloads last month
2
Safetensors
Model size
1.06M params
Tensor type
F32
·
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.