Note: this repo has low accuracy and is under investigation.

yujiepan/Meta-Llama-3-8B-gptq-w4g64

This model applies AutoGPTQ on meta-llama/Meta-Llama-3-8B.

  • 4-bit symmetric weight only quantization
  • group_size=64
  • calibration set: c4-new

Accuracy

model precision wikitext ppl (↓)
meta-llama/Meta-Llama-3-8B FP16 9.179
yujiepan/Meta-Llama-3-8B-gptq-w4g64 w4g64 10.097

Note:

  • Evaluated on lm-evaluation-harness "wikitext" task
  • Wikitext PPL does not guarantee actual accuracy, but helps to check the distortion after quantization.

Codes

import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig

model_id = "meta-llama/Meta-Llama-3-8B"
tokenizer = AutoTokenizer.from_pretrained(model_id)

quantization_config = GPTQConfig(
    bits=4, group_size=64,
    dataset="c4-new",
    tokenizer=tokenizer,
)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    low_cpu_mem_usage=True,
    quantization_config=quantization_config,
)
model.push_to_hub('yujiepan/Meta-Llama-3-8B-gptq-w4g64')
Downloads last month
12
Safetensors
Model size
2.05B params
Tensor type
FP16
·
I32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.