Yacine Jernite's picture

Yacine Jernite

yjernite

AI & ML interests

Technical, community, and regulatory tools of AI governance @HuggingFace

Recent Activity

liked a dataset about 10 hours ago
freshstack/corpus-oct-2024
liked a dataset about 10 hours ago
freshstack/queries-oct-2024
liked a Space about 14 hours ago
victor/providers-metrics
View all activity

Organizations

Hugging Face's profile picture Society & Ethics's profile picture BigScience Workshop's profile picture GEM benchmark's profile picture BigScience Catalogue Data's profile picture BigScience Data's profile picture HF Task Exploration's profile picture HuggingFaceM4's profile picture BigCode's profile picture Stable Bias's profile picture Hugging Face H4's profile picture ๐Ÿค— H4 Community's profile picture BigCode Data's profile picture Stable Diffusion Bias Eval's profile picture Librarian Bots's profile picture Blog-explorers's profile picture Evaluating Social Impacts of Generative AI's profile picture llm-values's profile picture Bias Leaderboard Development's profile picture AI Energy Score's profile picture Journalists on Hugging Face's profile picture Social Post Explorers's profile picture Frugal AI Challenge's profile picture Open R1's profile picture Open Agents's profile picture

yjernite's activity

posted an update 6 days ago
view post
Post
3066
Today in Privacy & AI Tooling - introducing a nifty new tool to examine where data goes in open-source apps on ๐Ÿค—

HF Spaces have tons (100Ks!) of cool demos leveraging or examining AI systems - and because most of them are OSS we can see exactly how they handle user data ๐Ÿ“š๐Ÿ”

That requires actually reading the code though, which isn't always easy or quick! Good news: code LMs have gotten pretty good at automatic review, so we can offload some of the work - here I'm using Qwen/Qwen2.5-Coder-32B-Instruct to generate reports and it works pretty OK ๐Ÿ™Œ

The app works in three stages:
1. Download all code files
2. Use the Code LM to generate a detailed report pointing to code where data is transferred/(AI-)processed (screen 1)
3. Summarize the app's main functionality and data journeys (screen 2)
4. Build a Privacy TLDR with those inputs

It comes with a bunch of pre-reviewed apps/Spaces, great to see how many process data locally or through (private) HF endpoints ๐Ÿค—

Note that this is a POC, lots of exciting work to do to make it more robust, so:
- try it: yjernite/space-privacy
- reach out to collab: yjernite/space-privacy
reacted to fdaudens's post with โค๏ธโž• 15 days ago
view post
Post
3624
I read the 456-page AI Index report so you don't have to (kidding). The wild part? While AI gets ridiculously more accessible, the power gap is actually widening:

1๏ธโƒฃ The democratization of AI capabilities is accelerating rapidly:
- The gap between open and closed models is basically closed: difference in benchmarks like MMLU and HumanEval shrunk to just 1.7% in 2024
- The cost to run GPT-3.5-level performance dropped 280x in 2 years
- Model size is shrinking while maintaining performance - Phi-3-mini hitting 60%+ MMLU at fraction of parameters of early models like PaLM

2๏ธโƒฃ But we're seeing concerning divides deepening:
- Geographic: US private investment ($109B) dwarfs everyone else - 12x China's $9.3B
- Research concentration: US and China dominate highly-cited papers (50 and 34 respectively in 2023), while next closest is only 7
- Gender: Major gaps in AI skill penetration rates - US shows 2.39 vs 1.71 male/female ratio

The tech is getting more accessible but the benefits aren't being distributed evenly. Worth thinking about as these tools become more central to the economy.

Give it a read - fascinating portrait of where AI is heading! https://hai-production.s3.amazonaws.com/files/hai_ai_index_report_2025.pdf
ยท
reacted to BrigitteTousi's post with ๐Ÿค—๐Ÿš€๐Ÿ”ฅโค๏ธ 16 days ago
view post
Post
2961
AI agents are transforming how we interact with technology, but how sustainable are they? ๐ŸŒ

Design choices โ€” like model size and structure โ€” can massively impact energy use and cost. โšก๐Ÿ’ฐ The key takeaway: smaller, task-specific models can be far more efficient than large, general-purpose ones.

๐Ÿ”‘ Open-source models offer greater transparency, allowing us to track energy consumption and make more informed decisions on deployment. ๐ŸŒฑ Open-source = more efficient, eco-friendly, and accountable AI.

Read our latest, led by @sasha with assists from myself + @yjernite ๐Ÿค—
https://huggingface.co/blog/sasha/ai-agent-sustainability
  • 1 reply
ยท
reacted to jsulz's post with ๐Ÿš€๐Ÿ”ฅ 16 days ago
view post
Post
3646
Huge week for xet-team as Llama 4 is the first major model on Hugging Face uploaded with Xet providing the backing! Every byte downloaded comes through our infrastructure.

Using Xet on Hugging Face is the fastest way to download and iterate on open source models and we've proved it with Llama 4 giving a boost of ~25% across all models.

We expect builders on the Hub to see even more improvements, helping power innovation across the community.

With the models on our infrastructure, we can peer in and see how well our dedupe performs across the Llama 4 family. On average, we're seeing ~25% dedupe, providing huge savings to the community who iterate on these state-of-the-art models. The attached image shows a few selected models and how they perform on Xet.

Thanks to the meta-llama team for launching on Xet!
reacted to giadap's post with โค๏ธ 26 days ago
view post
Post
2335
We've all become experts at clicking "I agree" without a second thought. In my latest blog post, I explore why these traditional consent models are increasingly problematic in the age of generative AI.

I found three fundamental challenges:
- Scope problem: how can you know what you're agreeing to when AI could use your data in different ways?
- Temporality problem: once an AI system learns from your data, good luck trying to make it "unlearn" it.
- Autonomy trap: the data you share today could create systems that pigeonhole you tomorrow.

Individual users shouldn't bear all the responsibility, while big tech holds all the cards. We need better approaches to level the playing field, from collective advocacy and stronger technological safeguards to establishing "data fiduciaries" with a legal duty to protect our digital interests.

Available here: https://huggingface.co/blog/giadap/beyond-consent
reacted to giadap's post with ๐Ÿ”ฅ 27 days ago
view post
Post
2335
We've all become experts at clicking "I agree" without a second thought. In my latest blog post, I explore why these traditional consent models are increasingly problematic in the age of generative AI.

I found three fundamental challenges:
- Scope problem: how can you know what you're agreeing to when AI could use your data in different ways?
- Temporality problem: once an AI system learns from your data, good luck trying to make it "unlearn" it.
- Autonomy trap: the data you share today could create systems that pigeonhole you tomorrow.

Individual users shouldn't bear all the responsibility, while big tech holds all the cards. We need better approaches to level the playing field, from collective advocacy and stronger technological safeguards to establishing "data fiduciaries" with a legal duty to protect our digital interests.

Available here: https://huggingface.co/blog/giadap/beyond-consent
reacted to davanstrien's post with ๐Ÿ‘€ 2 months ago
reacted to m-ric's post with ๐Ÿ”ฅ 3 months ago
view post
Post
4109
๐—ง๐—ต๐—ฒ ๐—›๐˜‚๐—ฏ ๐˜„๐—ฒ๐—น๐—ฐ๐—ผ๐—บ๐—ฒ๐˜€ ๐—ฒ๐˜…๐˜๐—ฒ๐—ฟ๐—ป๐—ฎ๐—น ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐˜ƒ๐—ถ๐—ฑ๐—ฒ๐—ฟ๐˜€!

โœ… Hosting our own inference was not enough: now the Hub 4 new inference providers: fal, Replicate, SambaNova Systems, & Together AI.

Check model cards on the Hub: you can now, in 1 click, use inference from various providers (cf video demo)

Their inference can also be used through our Inference API client. There, you can use either your custom provider key, or your HF token, then billing will be handled directly on your HF account, as a way to centralize all expenses.

๐Ÿ’ธ Also, PRO users get 2$ inference credits per month!

Read more in the announcement ๐Ÿ‘‰ https://huggingface.co/blog/inference-providers
  • 1 reply
ยท
reacted to singhsidhukuldeep's post with ๐Ÿš€ 3 months ago
view post
Post
3012
Exciting breakthrough in Retrieval-Augmented Generation (RAG): Introducing MiniRAG - a revolutionary approach that makes RAG systems accessible for edge devices and resource-constrained environments.

Key innovations that set MiniRAG apart:

Semantic-aware Heterogeneous Graph Indexing
- Combines text chunks and named entities in a unified structure
- Reduces reliance on complex semantic understanding
- Creates rich semantic networks for precise information retrieval

Lightweight Topology-Enhanced Retrieval
- Leverages graph structures for efficient knowledge discovery
- Uses pattern matching and localized text processing
- Implements query-guided reasoning path discovery

Impressive Performance Metrics
- Achieves comparable results to LLM-based methods while using Small Language Models (SLMs)
- Requires only 25% of storage space compared to existing solutions
- Maintains robust performance with accuracy reduction ranging from just 0.8% to 20%

The researchers from Hong Kong University have also contributed a comprehensive benchmark dataset specifically designed for evaluating lightweight RAG systems under realistic on-device scenarios.

This breakthrough opens new possibilities for:
- Edge device AI applications
- Privacy-sensitive implementations
- Real-time processing systems
- Resource-constrained environments

The full implementation and datasets are available on GitHub: HKUDS/MiniRAG
  • 1 reply
ยท
reacted to fdaudens's post with โค๏ธ 3 months ago
view post
Post
1844
Reminder: Donโ€™t. Use. ChatGPT. As. A. Calculator. Seriously. ๐Ÿค–

Loved listening to @sasha on Hard Forkโ€”it really made me think.

A few takeaways that hit home:
- Individual culpability only gets you so far. The real priority: demanding accountability and transparency from companies.
- Evaluate if generative AI is the right tool for certain tasks (like search) before using it.

Curious about the full conversation? https://www.nytimes.com/2025/01/17/podcasts/hardfork-tiktok-rednote-environment.html. Give it a listenโ€”itโ€™s worth it! ๐ŸŒ
  • 1 reply
ยท
reacted to meg's post with ๐Ÿ”ฅ 3 months ago
view post
Post
3375
๐Ÿ’ซ...And we're live!๐Ÿ’ซ Seasonal newsletter from ethicsy folks at Hugging Face, exploring the ethics of "AI Agents"
https://huggingface.co/blog/ethics-soc-7
Our analyses found:
- There's a spectrum of "agent"-ness
- *Safety* is a key issue, leading to many other value-based concerns
Read for details & what to do next!
With @evijit , @giadap , and @sasha
posted an update 3 months ago
view post
Post
2413
๐Ÿค—๐Ÿ‘ค ๐Ÿ’ป Speaking of AI agents ...
...Is easier with the right words ;)

My colleagues @meg @evijit @sasha and @giadap just published a wonderful blog post outlining some of the main relevant notions with their signature blend of value-informed and risk-benefits contrasting approach. Go have a read!

https://huggingface.co/blog/ethics-soc-7
reacted to merve's post with ๐Ÿ‘€ 4 months ago
view post
Post
3587
Apollo is a new family of open-source video language models by Meta, where 3B model outperforms most 7B models and 7B outperforms most 30B models ๐Ÿงถ

โœจ the models come in 1.5B https://huggingface.co/Apollo-LMMs/Apollo-1_5B-t32, 3B https://huggingface.co/Apollo-LMMs/Apollo-3B-t32 and 7B https://huggingface.co/Apollo-LMMs/Apollo-7B-t32 with A2.0 license, based on Qwen1.5 & Qwen2
โœจ the authors also release a benchmark dataset https://huggingface.co/spaces/Apollo-LMMs/ApolloBench

The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work โฏ๏ธ

Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B
they evaluate sampling strategies, scaling laws for models and datasets, video representation and more!
> The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled ๐Ÿ“ˆ scaling dataset has diminishing returns for smaller models
> They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal
> They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2
they find google/siglip-so400m-patch14-384 to be most powerful ๐Ÿ”ฅ
> they also compare freezing different parts of models, training all stages with some frozen parts give the best yield

They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models ๐Ÿ”ฅ
ยท
reacted to fdaudens's post with ๐Ÿ‘€ 4 months ago
view post
Post
1358
Did a fun experiment: What are the main themes emerging from the 100+ Nieman Journalism Lab predictions for 2025?

I used natural language processing to cluster and map them โ€” really helps spot patterns that weren't obvious when reading predictions one by one. So what will shape journalism next year? A lot of AI and US politics (surprise!), but there's also this horizontal axis that spans from industry strategies to deep reflections on how to talk to the public.

Click any dot to explore the original prediction. What themes surprise/interest you the most?

๐Ÿ‘‰ fdaudens/nieman_lab_2025_predictions_visualization

P.s.: I discovered that Nieman Lab's content is under Creative Commons license!
posted an update 4 months ago
view post
Post
2244
๐Ÿ‡ช๐Ÿ‡บ Policy Thoughts in the EU AI Act Implementation ๐Ÿ‡ช๐Ÿ‡บ

There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.

I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.

Full blog here, based on our submitted response with @frimelle and @brunatrevelin :

https://huggingface.co/blog/yjernite/eu-draft-cop-risks#on-the-proposed-taxonomy-of-systemic-risks
  • 2 replies
ยท