I read the 456-page AI Index report so you don't have to (kidding). The wild part? While AI gets ridiculously more accessible, the power gap is actually widening:
1️⃣ The democratization of AI capabilities is accelerating rapidly: - The gap between open and closed models is basically closed: difference in benchmarks like MMLU and HumanEval shrunk to just 1.7% in 2024 - The cost to run GPT-3.5-level performance dropped 280x in 2 years - Model size is shrinking while maintaining performance - Phi-3-mini hitting 60%+ MMLU at fraction of parameters of early models like PaLM
2️⃣ But we're seeing concerning divides deepening: - Geographic: US private investment ($109B) dwarfs everyone else - 12x China's $9.3B - Research concentration: US and China dominate highly-cited papers (50 and 34 respectively in 2023), while next closest is only 7 - Gender: Major gaps in AI skill penetration rates - US shows 2.39 vs 1.71 male/female ratio
The tech is getting more accessible but the benefits aren't being distributed evenly. Worth thinking about as these tools become more central to the economy.
AI agents are transforming how we interact with technology, but how sustainable are they? 🌍
Design choices — like model size and structure — can massively impact energy use and cost. ⚡💰 The key takeaway: smaller, task-specific models can be far more efficient than large, general-purpose ones.
🔑 Open-source models offer greater transparency, allowing us to track energy consumption and make more informed decisions on deployment. 🌱 Open-source = more efficient, eco-friendly, and accountable AI.
Huge week for xet-team as Llama 4 is the first major model on Hugging Face uploaded with Xet providing the backing! Every byte downloaded comes through our infrastructure.
Using Xet on Hugging Face is the fastest way to download and iterate on open source models and we've proved it with Llama 4 giving a boost of ~25% across all models.
We expect builders on the Hub to see even more improvements, helping power innovation across the community.
With the models on our infrastructure, we can peer in and see how well our dedupe performs across the Llama 4 family. On average, we're seeing ~25% dedupe, providing huge savings to the community who iterate on these state-of-the-art models. The attached image shows a few selected models and how they perform on Xet.
Thanks to the meta-llama team for launching on Xet!