my_billsum_model

This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3699
  • Rouge1: 0.1958
  • Rouge2: 0.0949
  • Rougel: 0.167
  • Rougelsum: 0.167
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.7958 0.1228 0.0386 0.0997 0.1 19.0
No log 2.0 124 2.5846 0.1385 0.047 0.1139 0.114 19.0
No log 3.0 186 2.5034 0.1506 0.0563 0.1232 0.1234 19.0
No log 4.0 248 2.4548 0.1734 0.0756 0.1467 0.1468 19.0
No log 5.0 310 2.4231 0.1893 0.0877 0.1597 0.1597 19.0
No log 6.0 372 2.3991 0.1926 0.0913 0.1638 0.1638 19.0
No log 7.0 434 2.3862 0.1945 0.0944 0.166 0.166 19.0
No log 8.0 496 2.3764 0.195 0.094 0.1662 0.1663 19.0
2.7718 9.0 558 2.3714 0.1959 0.0952 0.1672 0.1672 19.0
2.7718 10.0 620 2.3699 0.1958 0.0949 0.167 0.167 19.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yihongwang/my_billsum_model

Base model

google-t5/t5-small
Finetuned
(1654)
this model