Model Card for Model ID
This model is an instruction-tuned LLaMa model with 33B parameters, with specialities in medical QA and code instruction.
Model Details
- Model type: LlamaForCausalLM
- Language(s) (NLP): English
- License: As a Llama-derivative, this model cannot be used commercially.
- Finetuned from model (QLoRA): huggyllama/llama-30b
Training Details
Training Data
Converted the following datasets to alpaca:instruction format.
- ORCA style dataset generously created by Eric Hartford
- Refined dataset sourced from icliniq medical QA forum
- Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI
- Dolly 15k is a general instruction dataset generated by employees of Databricks.
Training Procedure
Trained using axolotl QLoRa on RunPod 8x A6000 on Community Cloud for 1 epochs (~23 hours - ~$110).
axolotl training config:
base_model: huggyllama/llama-30b
base_model_config: huggyllama/llama-30b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
hub_model_id:
hf_use_auth_token:
datasets:
- path: ehartford/dolphin
type: alpaca
data_files:
- flan1m-alpaca-uncensored.jsonl
- flan5m-alpaca-uncensored.jsonl
shards: 25
- path: sahil2801/code_instructions_120k
type: alpaca
- path: LinhDuong/chatdoctor-200k
type: alpaca
shards: 2
- path: c-s-ale/dolly-15k-instruction-alpaca-format
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
adapter: qlora
lora_model_dir:
sequence_len: 2048
max_packed_sequence_len: 2048
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_mode: true
wandb_project: med-orca-instruct-33b
wandb_watch:
wandb_run_id:
wandb_log_model: 'openllama_checkpoint'
output_dir: /disk/med-instruct-33b
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 2
xformers_attention: true
flash_attention:
gptq_groupsize:
gptq_model_v1:
warmup_steps: 100
eval_steps: 20
save_steps:
debug:
deepspeed: true
weight_decay: 0.00001
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.