Edit model card

Arabic NER Model

  • Github repo
  • NER BIO tagging model based on GigaBERTv4.
  • ACE2005 Training data: English + Arabic
  • NER tags including: PER, VEH, GPE, WEA, ORG, LOC, FAC

Hyperparameters

  • learning_rate=2e-5
  • num_train_epochs=10
  • weight_decay=0.01

ACE2005 Evaluation results (F1)

Language Arabic English
89.4 88.8

How to use

>>> from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer

>>> ner_model = AutoModelForTokenClassification.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_tokenizer = AutoTokenizer.from_pretrained("ychenNLP/arabic-ner-ace")
>>> ner_pip = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True)

>>> output = ner_pip('Protests break out across the US after Supreme Court overturns.')
>>> print(output)
[{'entity_group': 'GPE', 'score': 0.9979881, 'word': 'us', 'start': 30, 'end': 32}, {'entity_group': 'ORG', 'score': 0.99898684, 'word': 'supreme court', 'start': 39, 'end': 52}]

>>> output = ner_pip('ู‚ุงู„ ูˆุฒูŠุฑ ุงู„ุนุฏู„ ุงู„ุชุฑูƒูŠ ุจูƒูŠุฑ ุจูˆุฒุฏุงุบ ุฅู† ุฃู†ู‚ุฑุฉ ุชุฑูŠุฏ 12 ู…ุดุชุจู‡ุงู‹ ุจู‡ู… ู…ู† ูู†ู„ู†ุฏุง ูˆ 21 ู…ู† ุงู„ุณูˆูŠุฏ')
>>> print(output)
[{'entity_group': 'PER', 'score': 0.9996214, 'word': 'ูˆุฒูŠุฑ', 'start': 4, 'end': 8}, {'entity_group': 'ORG', 'score': 0.9952383, 'word': 'ุงู„ุนุฏู„', 'start': 9, 'end': 14}, {'entity_group': 'GPE', 'score': 0.9996675, 'word': 'ุงู„ุชุฑูƒูŠ', 'start': 15, 'end': 21}, {'entity_group': 'PER', 'score': 0.9978992, 'word': 'ุจูƒูŠุฑ ุจูˆุฒุฏุงุบ', 'start': 22, 'end': 33}, {'entity_group': 'GPE', 'score': 0.9997154, 'word': 'ุงู†ู‚ุฑุฉ', 'start': 37, 'end': 42}, {'entity_group': 'PER', 'score': 0.9946885, 'word': 'ู…ุดุชุจู‡ุง ุจู‡ู…', 'start': 51, 'end': 62}, {'entity_group': 'GPE', 'score': 0.99967396, 'word': 'ูู†ู„ู†ุฏุง', 'start': 66, 'end': 72}, {'entity_group': 'PER', 'score': 0.99694425, 'word': '21', 'start': 75, 'end': 77}, {'entity_group': 'GPE', 'score': 0.99963355, 'word': 'ุงู„ุณูˆูŠุฏ', 'start': 81, 'end': 87}]

BibTeX entry and citation info

@inproceedings{lan2020gigabert,
  author     = {Lan, Wuwei and Chen, Yang and Xu, Wei and Ritter, Alan},
    title      = {Giga{BERT}: Zero-shot Transfer Learning from {E}nglish to {A}rabic},
    booktitle  = {Proceedings of The 2020 Conference on Empirical Methods on Natural Language Processing (EMNLP)},
    year       = {2020}
  } 
Downloads last month
258
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.