Code llama 7b finetuned for 1 epoch on a subset of the python code instructions dataset. Scores .62 in humaneval with greedy decoding (matched to code llama pass@1).

To use in inference, you'll need to set trust_remote_code = True to pick up the right rope theta value:

from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("vikp/llama_coder")
model = AutoModelForCausalLM.from_pretrained("vikp/llama_coder", trust_remote_code=True)

text = tokenizer.bos_token + """\
import socket

def ping_exponential_backoff(host: str):""".lstrip()

tokens = tokenizer(text, return_tensors="pt")
output = model.generate(**tokens, max_new_tokens=128, do_sample=True, temperature=.1, top_p=1.0)
print(tokenizer.decode(output[0], skip_special_tokens=True).strip())

You can duplicate benchmark results with the bigcode eval harness:

git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
cd bigcode-evaluation-harness
pip install -e .
accelerate launch main.py \
  --model vikp/instruct_llama_7b \
  --tasks humaneval \
  --max_length_generation 1024 \
  --temperature 0 \
  --do_sample False \
  --n_samples 1 \
  --precision fp16 \
  --allow_code_execution \
  --save_generations \
  --use_auth_token \
  --trust_remote_code
Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.

Dataset used to train vikp/llama_coder