Feature Extraction
Transformers
PyTorch
hubert
Inference Endpoints

This repository contains the FIRST ITERATION mHuBERT-147 model. The best mHuBERT-147 model is available here.

MODEL DETAILS: 1st iteration, K=1000, HuBERT base architecture (95M parameters), 147 languages.

Table of Contents:

  1. Summary
  2. Training Data and Code
  3. ML-SUPERB Scores
  4. Languages and Datasets
  5. Citing and Funding Information

mHuBERT-147 models

mHuBERT-147 are compact and competitive multilingual HuBERT models trained on 90K hours of open-license data in 147 languages. Different from traditional HuBERTs, mHuBERT-147 models are trained using faiss IVF discrete speech units. Training employs a two-level language, data source up-sampling during training. See more information in our paper.

This repository contains:

  • Fairseq checkpoint (original);
  • HuggingFace checkpoint (conversion using transformers library);
  • Faiss index for continuous pre-training (OPQ16_64,IVF1000_HNSW32,PQ16x4fsr).

Related Models:

Training

ML-SUPERB Scores

mHubert-147 reaches second and first position in the 10min and 1h leaderboards respectively. We achieve new SOTA scores for three LID tasks. See more information in our paper.

image/png

Languages and Datasets

Datasets: For ASR/ST/TTS datasets, only train set is used.

Languages present not indexed by Huggingface: Asturian (ast), Basaa (bas), Cebuano (ceb), Central Kurdish/Sorani (ckb), Hakha Chin (cnh), Hawaiian (haw), Upper Sorbian (hsb) Kabyle (kab), Moksha (mdf), Meadow Mari (mhr), Hill Mari (mrj), Erzya (myv), Taiwanese Hokkien (nan-tw), Sursilvan (rm-sursilv), Vallader (rm-vallader), Sakha (sah), Santali (sat), Scots (sco), Saraiki (skr), Tigre (tig), Tok Pisin (tpi), Akwapen Twi (tw-akuapem), Asante Twi (tw-asante), Votic (vot), Waray (war), Cantonese (yue).

Citing and Funding Information

@inproceedings{boito2024mhubert,
author={Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos, Laurent Besacier, Ioan Calapodescu},
title={{mHuBERT-147: A Compact Multilingual HuBERT Model}},
year=2024,
booktitle={Interspeech 2024},
}
This is an output of the European Project UTTER (Unified Transcription and Translation for Extended Reality) funded by European Union’s Horizon Europe Research and Innovation programme under grant agreement number 101070631.

For more information please visit https://he-utter.eu/

NAVER LABS Europe: https://europe.naverlabs.com/

Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including utter-project/mHuBERT-147-base-1st-iter