distilhubert-finetuned-accents
This model is a fine-tuned version of ntu-spml/distilhubert on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 2.0748
- Accuracy: 0.2708
Model description
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.7
- num_epochs: 14
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.4778 | 1.0 | 48 | 2.4807 | 0.0938 |
2.4779 | 2.0 | 96 | 2.4651 | 0.1042 |
2.4751 | 3.0 | 144 | 2.4365 | 0.1042 |
2.3777 | 4.0 | 192 | 2.4187 | 0.1042 |
2.3786 | 5.0 | 240 | 2.4050 | 0.1458 |
2.3754 | 6.0 | 288 | 2.3446 | 0.1458 |
2.1556 | 7.0 | 336 | 2.2284 | 0.2083 |
2.1062 | 8.0 | 384 | 2.1533 | 0.2188 |
2.0081 | 9.0 | 432 | 2.0765 | 0.2292 |
1.813 | 10.0 | 480 | 2.0671 | 0.2083 |
1.74 | 11.0 | 528 | 1.9977 | 0.3021 |
1.4795 | 12.0 | 576 | 2.0588 | 0.2396 |
1.298 | 13.0 | 624 | 2.0652 | 0.3021 |
1.2578 | 14.0 | 672 | 2.0748 | 0.2708 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 21
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ummonk/distilhubert-finetuned-accents
Base model
ntu-spml/distilhubert