w2v2_ablation_200epoch-with_ling_head-0drop-0load_best-best_on_tp0.025_tl10_fp0.001_fl16

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5364
  • Wer: 0.1808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.0922 4.72 500 5.2296 1.0
4.3263 9.43 1000 5.4260 1.0
1.9702 14.15 1500 1.6761 0.4369
0.7013 18.87 2000 0.6799 0.2360
0.4391 23.58 2500 0.5237 0.1964
0.3015 28.3 3000 0.4437 0.1849
0.2416 33.02 3500 0.4311 0.2081
0.2057 37.74 4000 0.4202 0.1697
0.1714 42.45 4500 0.4270 0.1738
0.1812 47.17 5000 0.4467 0.1600
0.1498 51.89 5500 0.4322 0.2197
0.1255 56.6 6000 0.4408 0.1696
0.1148 61.32 6500 0.4531 0.1765
0.1112 66.04 7000 0.4572 0.2148
0.1038 70.75 7500 0.4648 0.1894
0.0923 75.47 8000 0.4812 0.1558
0.086 80.19 8500 0.4882 0.1894
0.0872 84.91 9000 0.4662 0.1744
0.0778 89.62 9500 0.4800 0.1750
0.0709 94.34 10000 0.5077 0.1960
0.0703 99.06 10500 0.5038 0.1740
0.0721 103.77 11000 0.5131 0.1763
0.0717 108.49 11500 0.5091 0.1896
0.0818 113.21 12000 0.5173 0.1908
0.0626 117.92 12500 0.5158 0.1865
0.0749 122.64 13000 0.5208 0.1865
0.0592 127.36 13500 0.5244 0.1781
0.055 132.08 14000 0.5303 0.1810
0.0487 136.79 14500 0.5264 0.1739
0.0486 141.51 15000 0.5225 0.1814
0.0478 146.23 15500 0.5316 0.1870
0.0453 150.94 16000 0.5270 0.1776
0.0449 155.66 16500 0.5318 0.1821
0.0585 160.38 17000 0.5332 0.1775
0.0481 165.09 17500 0.5373 0.1784
0.0459 169.81 18000 0.5335 0.1756
0.0473 174.53 18500 0.5360 0.1808
0.0512 179.25 19000 0.5347 0.1791
0.046 183.96 19500 0.5367 0.1778
0.048 188.68 20000 0.5354 0.1783
0.0471 193.4 20500 0.5366 0.1814
0.0419 198.11 21000 0.5364 0.1808

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.13.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.14.1
Downloads last month
5
Safetensors
Model size
98.8M params
Tensor type
FP16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tuanio/w2v2_ablation_200epoch-with_ling_head-0drop-0load_best-best_on_tp0.025_tl10_fp0.001_fl16

Finetuned
(56)
this model