Made using Gpt-Small from scratch for learning purpose. Tokenizer used is from Gemma 2-2B-JPN-IT which is trained on japanese dataset from JESC.

Model usage:-

from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer=AutoTokenizer.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model=AutoModelForCausalLM.from_pretrained('tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer')
model.cuda()
src_text='あγͺたとは遊びたくγͺい'
print(tokenizer.batch_decode(model.generate(tokenizer.encode(f"Translate the following Japanese sentence to English:\n\nJapanese:{src_text}\nEnglish:",return_tensors='pt')[:,:-1].cuda(),max_length=128))[0])

OUTPUT:

<bos>Translate the following Japanese sentence to English:

Japanese:あγͺたとは遊びたくγͺい
English:i don't want to play with you.<eos>
@ARTICLE{pryzant_jesc_2018,
   author = {{Pryzant}, R. and {Chung}, Y. and {Jurafsky}, D. and {Britz}, D.},
    title = "{JESC: Japanese-English Subtitle Corpus}",
  journal = {Language Resources and Evaluation Conference (LREC)},
 keywords = {Computer Science - Computation and Language},
     year = 2018
}
Downloads last month
46
Safetensors
Model size
282M params
Tensor type
F32
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer

Finetuned
(1406)
this model

Dataset used to train tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer

Space using tirthadagr8/Japanese_to_english_gpt2CasualLM_GemmaTokenizer 1