timm
/

Image Classification
timm
PyTorch
Safetensors
Edit model card

Model card for sebotnet33ts_256.a1h_in1k

A BotNet image classification model (with Squeeze-and-Excitation channel attention, based on ResNet architecture). Trained on ImageNet-1k in timm by Ross Wightman.

NOTE: this model did not adhere to any specific paper configuration, it was tuned for reasonable training times and reduced frequency of self-attention blocks.

Recipe details:

  • Based on ResNet Strikes Back A1 recipe
  • LAMB optimizer
  • Stronger dropout, stochastic depth, and RandAugment than paper A1 recipe
  • Cosine LR schedule with warmup

This model architecture is implemented using timm's flexible BYOBNet (Bring-Your-Own-Blocks Network).

BYOB (with BYOANet attention specific blocks) allows configuration of:

  • block / stage layout
  • block-type interleaving
  • stem layout
  • output stride (dilation)
  • activation and norm layers
  • channel and spatial / self-attention layers

...and also includes timm features common to many other architectures, including:

  • stochastic depth
  • gradient checkpointing
  • layer-wise LR decay
  • per-stage feature extraction

Model Details

  • Model Type: Image classification / feature backbone
  • Model Stats:
    • Params (M): 13.7
    • GMACs: 3.9
    • Activations (M): 17.5
    • Image size: 256 x 256
  • Papers:
  • Dataset: ImageNet-1k

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('sebotnet33ts_256.a1h_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'sebotnet33ts_256.a1h_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 32, 128, 128])
    #  torch.Size([1, 256, 64, 64])
    #  torch.Size([1, 512, 32, 32])
    #  torch.Size([1, 1024, 16, 16])
    #  torch.Size([1, 1280, 8, 8])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'sebotnet33ts_256.a1h_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1280, 8, 8) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

Explore the dataset and runtime metrics of this model in timm model results.

Citation

@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
@article{Srinivas2021BottleneckTF,
  title={Bottleneck Transformers for Visual Recognition},
  author={A. Srinivas and Tsung-Yi Lin and Niki Parmar and Jonathon Shlens and P. Abbeel and Ashish Vaswani},
  journal={2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021},
  pages={16514-16524}
}
@inproceedings{wightman2021resnet,
  title={ResNet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and Jegou, Herve},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future}
}
Downloads last month
76,317
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference API
Drag image file here or click to browse from your device

Dataset used to train timm/sebotnet33ts_256.a1h_in1k